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Abstract

Shrinkage methods are frequently used to estimate fixed effects. However,
the risk properties of existing estimators are fragile to violations of the underly-
ing distributional assumptions. I develop an estimator for the fixed effects that
obtains the best possible mean squared error (MSE) within a class of shrink-
age estimators. This class includes conventional estimators, and the optimality
does not require distributional assumptions. Importantly, the fixed effects are
allowed to vary with time and to be serially correlated, and the shrinkage opti-
mally incorporates the underlying correlation structure in this case. In such a
context, I also provide a method to forecast fixed effects one period ahead. A
simulation study shows that the proposed estimator substantially reduces the
MSE relative to conventional methods when the distributional assumptions of
the conventional methods are violated, and loses very little when the assump-
tions are met. Using administrative data on the public schools of New York City,
I estimate a teacher value-added model and show that the proposed estimator
makes an empirically relevant difference. An optimized R package, FEShR, to
implement the proposed method is provided.1
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1 Introduction

Linear panel data models commonly include fixed effects to allow for unobserved het-
erogeneity. The fixed effects capture information about heterogeneity that is often
empirically relevant, and thus fixed effects themselves are a parameter of interest in
a number of studies. Following the work of Abowd et al. (1999), the literature on
the analysis of wage differential factors has focused on employer (and employee) fixed
effects in a linear panel specification with wages as the outcome. In the literature on
teacher valued-added (Rockoff, 2004; Rothstein, 2010; Chetty et al., 2014a), student
test scores are regressed on student characteristics along with a teacher fixed effect,
and this fixed effect is interpreted as a measure of teacher quality. Other examples
include the effects of neighborhoods on intergenerational mobility (Chetty and Hen-
dren, 2018), judges on sentence length (Kling, 2006), schools on student achievement
(Angrist et al., 2017), and hospitals on patient outcomes (Hull, 2020).2

Researchers typically estimate a large number of fixed effects, such as one for each
firm in a given economy or for each teacher in a school district. However, the effective
sample size available for the estimation of each fixed effect is relatively small: a single
employer can hire only so many employees, and a single teacher can teach only so
many students. Formally, in the asymptotic experiment, the number of fixed effects
often grows to infinity, but the sample size corresponding to each fixed effect remains
finite. If the researcher uses the least squares estimator—the coefficient on the dummy
variables for the fixed effect units under the corresponding OLS specification—one
ends up with a large number of noisy estimates.

To resolve this problem, applied researchers have used estimators that shrink the
least squares estimator using an Empirical Bayes (EB) method. Such EB estimators
are derived under a hierarchical model. The model assumes that the true fixed effect
is drawn from a normal distribution with unknown moments. These moments are
called hyperparameters. The least squares estimator conditional on the true fixed
effect is also assumed to follow a normal distribution, centered at the true fixed effect
with known variance.3 Under this model, the mean of the true fixed effect conditional
on the least squares estimator (i.e., the posterior mean) provides a class of shrinkage
estimators indexed by the hyperparameters. The hyperparameters determine the

2Some of the examples do not strictly fall into a linear panel data setting, but the idea is similar.
3In practice, the variance is unknown and a consistent estimator can be plugged in.
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degree of shrinkage, where the least squares estimators with lower variances get shrunk
by less. In the EB framework, the hyperparameters are tuned by maximizing the
marginal likelihood of the least squares estimator implied by the hierarchical model.4

Since the hyperparameters are tuned using the distributional assumptions made in
the hierarchical model, the risk properties of EB estimators are inherently sensitive
to these assumptions.

I provide an alternative shrinkage estimator with optimality properties that do
not rely on such distributional assumptions. Moreover, I allow the fixed effects to
vary with time and to be serially correlated within each unit. While it seems natural
for the fixed effects to vary with time, allowing such time drift in the fixed effects
makes the least squares estimator even noisier, which is possibly one reason such a
specification has not been used often.5 The proposed shrinkage method takes into
account the underlying correlation structure, and pools the information across time in
a way that minimizes the risk of the estimator. In particular, the EB estimator used
under the assumption of time-invariant fixed effects is a special case of the proposed
estimator. With the proposed procedure, the data decides whether or not to use this
estimator. In this context of time-varying fixed effects, I also provide an optimal
forecast method to predict the fixed effect one period ahead.

The derivation of the proposed estimator starts from the same hierarchical model
that the EB method employs. However, unlike in the EB approach, the model is
used only to restrict the class of estimators to those defined by the posterior mean.
Once the class of estimators is narrowed down, no further reference is made to any
of the distributional assumptions imposed by the hierarchical model. The hyperpa-
rameters are chosen so that the corresponding estimator minimizes an estimate of the
MSE, which is the risk criteria I use throughout the paper. I refer to this estimate
of the risk as the unbiased risk estimate (URE). The URE estimator chooses the
hyperparameters to minimize the URE.6

I show that the URE converges to the true loss in a suitable sense. This conver-
gence between the risk estimate and the true risk implies the (asymptotic) optimality
of the URE estimator within the class of estimators under consideration. This class

4This is the EB maximum likelihood procedure. Another popular procedure is the EB method
of moments, where the method of moments is used under the same marginal distribution.

5The effective sample size available for estimation of a unit-time fixed effect is roughly 1/T of
that for estimation of a unit fixed effect, where T is the number of time periods.

6This terminology is adopted from Xie et al. (2012).
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includes, for example, the conventional EB methods used in the literature. Also, while
the least squares estimator does not belong to the class of estimators I consider, a
simple approximation argument shows that the URE estimator weakly dominates this
estimator as well. Hence, the URE estimator improves upon estimators used in the
literature.

The optimality of the estimator holds under only mild regularity conditions, and
thus is robust to the distributional assumptions that EB methods rely on. In par-
ticular, the normality assumptions on the true fixed effects and on the least squares
estimator are not required. The normality of the true fixed effect is usually difficult
to justify. For the least squares estimator, normality could be plausible if the sample
size available for a given fixed effect is large enough to make a central limit theorem
argument. However, this is not typically the case. For example, in datasets used
in the teacher value-added literature, many teachers are linked to fewer than fifteen
students.

Another implicit assumption made by EB methods is that the mean (i.e., the true
fixed effect) and variance of the least squares estimator are independent. This rules
out the existence of factors that affect both the true fixed effect and the variance of the
least squares estimator, which can happen, for example, in the presence of conditional
heteroskedasticity. Also, in the teacher value-added model, the variance term of the
least squares estimator for the fixed effect of a teacher is inversely proportional to the
number of the students the teacher has taught. Hence, if there is any relationship
between the number of students in a teacher’s class and the teacher’s value-added, the
EB assumption is violated.7 Likewise, this assumption is violated in the employee-
employer matched data setting if bigger firms pay higher wages. The URE estimator
is robust to such violations.

To show the optimality of the URE estimator, I derive new results in a multivariate
normal means setting. This setting has a natural connection with the least squares
estimator. The normal means problem is the problem of estimating the mean vectors
{θj}Jj=1 upon observing yj

indep∼ N(θj,Σj) with yj ∈ RT and j = 1, . . . , J . Under
heteroskedasticity, in the sense that Σj varies with j, no estimator has been shown to
be risk optimal (in a frequentist sense) unless T = 1, which has been dealt with by
Xie et al. (2012). Allowing for T > 1 and general forms of Σj, I derive an estimator

7For example, EB assumptions are violated if better teachers are assigned more students and/or
class size affects teaching effectiveness.
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that obtains the best possible MSE within a certain class of estimators in this model.
This result can be applied beyond the estimation of fixed effects. In any context with
a large number of parameters and an (approximately) unbiased estimator of these
parameters, my method can be used to reduce the MSE.

Simulation results demonstrate the effectiveness of the URE estimator. While all
theoretical results rely on asymptotic arguments, the URE estimator shows desirable
risk properties even for moderate sample sizes. Across all scenarios with sample sizes
of at least 600, the MSE of the URE estimator is within 10% of the best possible
MSE. Moreover, the results show that the risk reduction relative to the EB methods
can be substantial when the distributional assumptions of the EB methods are not
met. For some scenarios, this reduction is as large as 80%. This reduction comes at
a relatively small price; even when the EB assumptions are met exactly, the risk of
the URE estimator is at most 5% greater than that of the EB estimator.

I use the proposed method to estimate a teacher value-added model using admin-
istrative data on the public schools of New York City. This analysis indicates that
the choice of the estimator makes a significant difference in policy-related empirical
results, and that it is crucial to allow for the fixed effects to vary with time. I revisit
the policy exercise of releasing the bottom 5% of teachers according to the estimated
fixed effects. I find that, relative to the conventional methods, the composition of
released teachers changes by 25% if the proposed method is used and by 58% if the
proposed forecast method is used. Moreover, an out-of-sample exercise shows that
the average value-added of the teachers released under the forecast method is about
20% lower compared to the case where the conventional estimator is used.

Related literature. There is an abundant literature on the normal means model
starting from the seminal papers by Stein (1956) and James and Stein (1961). How-
ever, the (frequentist) risk properties of James–Stein type estimators in the het-
eroskedastic normal means model have been considered only recently by Xie et al.
(2012). Xie et al. (2012) consider the problem of estimating the univariate, het-
eroskedastic normal means model by minizing a risk estimate. Subsequently, Xie
et al. (2016), Kong et al. (2017), Kou and Yang (2017), and Brown et al. (2018) use a
similar approach in different settings, providing optimal shrinkage estimation meth-
ods. My paper provides an optimal shrinkage procedure for a normal means model
that has not been considered in the literature, using similar URE methods introduced
in such papers. Unlike the previous papers that require tuning at most two scalar hy-
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perparameters, here the hyperparameter includes a T×T positive semidefinite matrix
and possibly an additional vector of length T . When T = 1, the proposed method
reduces to the methods of Xie et al. (2012) and Kou and Yang (2017).

Recently, there has been increased interest in EB and shrinkage methods in econo-
metrics. While the present paper does not use an EB approach in its strict sense,
the class of estimators I consider is inspired by an EB setting. Also, the URE es-
timators fall into the category of shrinkage estimators, though it seems that this
specific form has not been considered in the literature. Hansen (2016) provides a
method to shrink maximum likelihood estimators to subspaces defined by nonlinear
constraints and derives risk properties of the resulting estimator. In a related setting,
Fessler and Kasy (2019) take an EB approach to effectively incorporate information
implied by economic theory. For regularized estimation problems, Abadie and Kasy
(2019) provide a method of choosing the tuning parameter that gives desirable risk
properties. Bonhomme and Weidner (2019) use EB methods to estimate population
averages conditional on the given sample, and Liu et al. (2020) use nonparametric
EB methods to provide forecasts for the outcome variable in a short panel setting.
Armstrong et al. (2020) give robust confidence intervals for EB estimators.

The literature on teacher value-added (Rockoff, 2004; Kane et al., 2008; Rothstein,
2010; Chetty et al., 2014a; see Koedel et al., 2015 for a recent review on the topic)
has fruitfully employed EB shrinkage methods to estimate teacher fixed effects. My
method can effectively estimate teacher value-added without resorting to restrictive
distributional assumptions. Moreover, the value-added is allowed to vary with time.
Chetty et al. (2014a) were the first to allow the teacher value-added to change with
time.8 The analysis by Bitler et al. (2019) suggests that it is important to allow
for such time-drifts, and my empirical analysis adds evidence for this potential im-
portance. Gilraine et al. (2020) proposes a nonparametric EB approach to estimate
value-added by using the methods of Koenker and Mizera (2014). By taking this
nonparametric EB approach, they relax the normality assumption on the true fixed
effect and consider a broader class of estimators. This approach complements the
URE methods introduced here, as I discuss in more detail later.

Outline. Section 2 describes the linear panel data model and shows how the estima-
tion of fixed effects is asymptotically equivalent to estimating the mean vector in a

8The estimator used by Chetty et al. (2014a) can be considered as a special case of the predictors
introduced in Section 5.2, under the assumption of equal class sizes.
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normal means problem. Section 3 defines the URE and the URE estimators obtained
by minimizing the URE. Section 4 establishes the optimality of the URE estimators.
Section 5 provides two methods to summarize the time trajectory of fixed effects.
Section 6 demonstrates the efficacy of the URE estimators via a simulation study.
In Section 7, I estimate a teacher value-added model using the proposed estimator.
Proof of the main theorems are given in Appendix A.

Notation. Let {Wijt} be a real (either random or nonrandom) sequence, where
the indices take values j = 1, . . . J , t = 1, . . . , T , and i = 1, . . . , njt for any (j, t)-
pair. The following vectors are defined by concatenating the sequence at different
levels: Wjt = (W1jt, . . . ,Wnjtjt)

′, Wj = (W ′
j1, . . . ,W

′
jT )′, and W = (W ′

1, . . . ,W
′
J)′.

The (j, t)-level average is written W jt = n−1
jt

∑njt

i=1Wijt and the demeaned version of
the sequence is defined W̃ijt = Wijt −W jt.

Let ‖·‖ denote the Euclidean norm for both vectors and matrices (i.e., the Frobe-
nius norm in the latter case). For any matrix A, (A)ij denotes its (i, j) entry and
σk(A) its kth largest singular value. By definition, σ1(A) is the operator norm of the
matrix A. Likewise, λk(A) denotes the kth largest eigenvalue of a square matrix A, so
that σk(A) = λk(A) for all k when A is positive semidefinite. Let κ(A) = σ1(A)/σk(A)

be the condition number of any k × k matrix A. For two real symmetric matrices
A and B, I write A ≥ B to denote that A − B is positive semidefinite, with strict
inequality meaning that A−B is positive definite. For any d ∈ Rk, let diag(d) denote
the k × k diagonal matrix with diagonal elements d. The set of positive semidefinite
k × k matrices is denoted by S+

k , and the k × k identity matrix is denoted by Ik.

2 Fixed effects and the normal means model

2.1 The linear panel data model

I consider the following linear panel data model,

Yijt = X ′ijtβ + αjt + εijt, (1)

where t = 1, . . . , T , j = 1, . . . J , and for each (j, t) i = 1, . . . , njt. Here, {(Yijt, X ′ijt)}
denotes the observed data, εijt the idiosyncratic shock, and αjt the time-varying fixed
effect which is the object of interest. Typically, i is some individual level, j group
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level, and t a time dimension. The time-varying fixed effect for j, αj := (αj1, . . . αjT )′

is assumed to be independent across j but is allowed to be serially correlated. For
the idiosyncratic error terms, assume εj = (εj1, . . . , εjT )′ is independent across j and
with αj, and denote its variance matrix by Σj. The variance matrix Σj is assumed
known, and in practice a consistent estimator is plugged in under suitable conditions,
which does not affect the asymptotic properties.

Remark 2.1 (T = 1). For a special case, consider T = 1 and omit the time subscripts.
Then, interpreting i as “time,” the model simplifies to

Yij = X ′ijβ + αj + εij,

which is the canonical panel data model indexed by individual and time. Hence, the
setting in consideration includes this canonical panel model as a special case.

Example 2.1 (Teacher value-added). In the teacher value-added model, j corre-
sponds to teacher, t to school year, and i to a student assigned to teacher j in school
year t. The outcome variable Yijt is a measure of student achievement (e.g., test score)
and Xijt is a vector of student characteristics. The fixed effect αjt is the value-added
of teacher j in year t, and is considered a measure of teacher quality. I use this model
as a running example throughout the paper. For this example, I further assume that
εijt is i.i.d across all i, j, and t with variance σ2

ε so that Σj = σ2
εdiag(1/nj1, . . . , 1/njT ).

See Koedel et al. (2015) for a recent review on the literature, including a discussion
on specification issues.

There are numerous other examples that fall into this framework. In the widely
used wage determination model first introduced by Abowd et al. (1999), j corresponds
to employer, t to year, and i to employee. In this model, an employee fixed effect is
typically included as well. The outcome variable is log wages and the employer fixed
effect captures the wage differential due to the employer. In a different, but related
setting used in the analysis of neighborhood effects on future economic outcomes by
Chetty and Hendren (2018), j corresponds to either commuting zone or county. Here,
the outcome variable is some measure of future economic outcome, and the fixed effect
captures the effect of the neighborhood one resides in during her childhood to future
economic outcome.

All asymptotic arguments are as J →∞ with T and njt fixed. This captures the
common situation where the number of fixed effects to be estimated is large (J →∞),
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with observations for each fixed effect unit being relatively small (njt remains fixed).
In the teacher value-added model, this corresponds to the asymptotic experiment
where the number of teachers grows to infinity, with the year dimensions and students
per teacher fixed. I assume that a consistent estimator β̂ of β is readily available,
which is easy to obtain under standard assumptions such as strict exogeneity (see,
for example, Wooldridge (2010) for a textbook level discussion).

2.2 Connection with the normal means model

Let α̂jt denote the least squares estimator for the fixed effects, which can be obtained
by taking the coefficients of the (j, t)-level dummy variable9 in the corresponding OLS
specification:

α̂jt := Y jt −X
′
jtβ̂ = X

′
jt(β − β̂) + αjt + εjt = αjt + εjt +Op(J

−1/2).

To see the connection between this estimator and the normal means model, note that
α̂j →d αj + εj for each j ≤ J . Further assuming that εj follows a normal distribution
(with variance matrix Σj), I have (αj + εj) |αj ∼ N(αj,Σj) so that

α̂j|αj ∼ N(αj,Σj), (2)

approximately. I note that under a mild boundedness condition on Xijt that ensures
supj‖Xj‖ = Op(1), such convergence is in fact uniform over j. This is because, by
Cauchy-Schwarz,

P
(

supj‖α̂j − αj − εj‖ > ε
)
≤ P

(
‖β̂ − β‖ supj‖Xj‖ > ε

)
.

This shows the natural connection between the estimation of fixed effects in a
linear panel data model and the estimation of the means in a (multivariate) normal
means model. Note that even if εijt is homoskedastic so that var(εijt) = σ2

ε , the
variance term of the aggregate term is var(εjt) = σ2

ε/njt so that heteroskedasticity is
present due to the different cell sizes, njt. Under such heteroskedasticity, it has been
noted by Xie et al. (2012) that EB methods do not enjoy the many risk properties

9When JT is very large, running an OLS regression with dummy variables is computationally
inefficient, and thus standard statistics software that deal with large number of fixed effects do not
estimate the fixed effects this way. However, I use this explanation due to its intuitiveness.
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that they do under a homoskedastic setting, where the EB estimator is essentially the
same as the James-Stein estimator.

Due to this connection, I now consider the problem of estimating the mean
vectors under a multivariate normal means model. The problem is to estimate
θ = (θ′1, . . . , θ

′
J)′ after observing the data {yj}Jj=1 where this is generated according

to
yj|θj

indep∼ N(θj,Σj), (3)

for j = 1, . . . , J with yj, θj ∈ RT . The variance matrix Σj ∈ S+
T is assumed to

be known. This has the exact same structure as the asymptotic approximation of
the least squares estimator as seen in (2), with the data yj being the least squares
estimator and θj the true fixed effect.

3 URE estimators

3.1 Class of shrinkage estimators

The URE estimators will be shown to be optimal within a class of shrinkage estima-
tors, that nests commonly used estimators. The class of estimators corresponds to
the Bayes estimators under a hierarchical model. The hierarchical model postulates
a Gaussian model on the true mean vector (true fixed effect), which I refer to as a
second level model, on top of the Gaussian model on the data (least squares estima-
tor). I emphasize that both normality assumptions are used only to derive the class
of estimators.

Consider the second level model

θj
i.i.d.∼ N(µ,Λ), (4)

where the location vector µ ∈ RT and the variance matrix Λ ∈ S+
T are unknown

hyperparameters to be tuned. The restriction one imposes on Λ incorporates the
prior knowledge on the underlying covariance structure. I denote by L ⊂ S+

T the set
that reflects this prior knowledge. As a practical matter, this reduces the dimension
of the optimization problem that one must solve to obtain the URE estimators. For
example, when θj is believed to be covariance stationary, one can take L as the set of
positive semidefinite Toeplitz matrices. This reduces the dimension of Λ to T from
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T (T + 1)/2 when Λ is left unrestricted.
The second level model (4), together with the normal means model (3), gives a

hierarchical Bayes model. By standard calculations, the Bayes estimator of θj under
this model is given as

θ̂j(µ,Λ) := E[θj|y] =µ+ Λ(Λ + Σj)
−1(yj − µ)

=
(
IT − Λ(Λ + Σj)

−1
)
µ+ Λ(Λ + Σj)

−1yj

Analogous to the univariate case, I refer to Λ(Λ + Σj)
−1 as the shrinkage matrix.

It can be shown that the largest singular value of the shrinkage matrix is less than
1, justifying the term “shrinkage.” As in the univariate case, noisier observations
get more severely shrunken in the sense that Σ̃j ≤ Σj implies σt(Λ(Λ + Σj)

−1) ≤
σt(Λ(Λ + Σ̃j)

−1) for all t = 1, . . . , T . The shrinkage occurs towards the mean of the
second level model, µ. In the literature, this is frequently set to 0 after demeaning the
least squares estimators, but this is not necessarily the best choice for URE estimators
despite the demeaning. I come back to this issue later.

Example 3.1 (Independent case). If Λ = λIT and Σj = diag(σ2
j1, . . . , σ

2
jT ), then the

tth component of θ̂j(µ,Λ) is given as(
1− λ

λ+ σ2
jt

)
µt +

λ

λ+ σ2
jt

yjt,

which is the form of shrinkage estimators10 used in the literature (Rockoff, 2004;
Chetty and Hendren, 2018; etc.), with a specific choice of λ and µ. Moreover, when
µ = 0 and σ2

jt does not vary with j, an appropriate choice of λ in fact gives the
James-Stein estimator.

Example 3.2 (T = 2). To gain some intuition on how the correlation terms of the
second level model affect the form of shrinkage, consider the case where T = 2 with
Σj =

(
σ2
j1 0

0 σ2
j2

)
and Λ =

(
λ21 λ1λ2ρ

λ1λ2ρ λ22

)
, and µ is set to 0. Write yj = (yj1, yj2)′ and

10More precisely, the estimators used in the literature take this form without the time-varying
component, and thus everything is aggregated at the j level so that the subscript t disappears.
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θj = (θj1, θj2)′. The estimator θ̂j(0,Λ) can be explicitly calculated as

Λ(Λ + Σj)
−1yj

=
1

(λ2
1 + σ2

j1)(λ2
2 + σ2

j2)− λ2
1λ

2
2ρ

2

(
λ2

1(λ2
2 + σ2

j2)− λ2
1λ

2
2ρ

2 λ1λ2ρσ
2
j1

λ1λ2ρσ
2
j2 λ2

2(λ2
1 + σ2

j1)− λ2
1λ

2
2ρ

2

)
yj.

Hence, the estimator for θj1 is

λ2
1(λ2

2 + σ2
j2)− λ2

1λ
2
2ρ

2

(λ2
1 + σ2

j1)(λ2
2 + σ2

j2)− λ2
1λ

2
2ρ

2
yj1 +

λ1λ2ρσ
2
j1

(λ2
1 + σ2

j1)(λ2
2 + σ2

j2)− λ2
1λ

2
2ρ

2
yj2.

The coefficient on yj1 is positive and decreases in |ρ|; one uses less of the information
from yj1 as the information from yj2 increases. The absolute value of the coefficient
on yj2 increases with |ρ|, and thus using more of yj2 when there is more correlation.
Both coefficients are smaller than 1 in magnitude. Furthermore, the Euclidean norm
of the coefficients (as a vector in R2) is smaller than 1, showing that the estimator is
indeed a shrinkage estimator.

Example 3.3 (Perfect correlation). Let 1 denote the T -vector with all elements equal
to 1. Consider the case where Λ = λ11′, which is essentially assuming θjt is equal
across t. Let Σj = σ2diag(1/nj1, . . . , 1/njT ), which corresponds to the linear panel
data model with idiosyncratic errors that are homoskedastic and uncorrelated across
time. Denote the teacher-level sample size by nj =

∑T
t=1 njt. In this context, the

estimator θ̂(0,Λ) is given as

λ11′(Σ−1
j − Σ−1

j 1(1/λ+ 1′Σ−1
j 1)−11′Σ−1

j )yj

=λ11′

(
Σ−1
j −

Σ−1
j 11′Σ−1

j

1/λ+
∑T

t=1 njt/σ
2

)
yj

=1
λ

σ2/nj + λ

(
1

nj

T∑
t=1

njtyjt

)
,

where the first equality follows by the Woodbury matrix identity.
Note that 1

nj

∑T
t=1 njtyjt is a weighted mean of the least squares estimators of

teacher j, and thus is essentially the least squares estimator for the teacher level fixed
effect without time drift. This is exactly the estimator used in the majority of the
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teacher value-added literature with an appropriate choice of λ.11 In the proposed
method, whether to use this estimator or not is determined in a data driven way,
depending on whether this choice of Λ indeed minimizes the risk.

To better understand the operation the shrinkage matrix performs to the data,
let UDU ′ denote the spectral decomposition of Σ

−1/2
j ΛΣ

−1/2
j , the signal-to-noise ratio

matrix, with D = diag(d1, . . . , dT ). For simplicity, consider the case with µ = 0. It
can be shown that

θ̂j(0,Λ) = Λ(Λ + Σj)
−1yj = Σ

1/2
j UD(IT +D)−1U ′Σ

−1/2
j yj.

Here, the last Σ
−1/2
j term simply standardizes the data, yj, and the first Σ

1/2
j term

brings it data back to its original scale and direction. The UD(IT + D)−1U ′ term
captures the direction and degree of shrinkage. Specifically, U ′ rotates the stan-
dardized data Σ

−1/2
j yj in the direction of the eigenvectors of the signal-to-noise ra-

tio matrix, D(IT + D)−1 shrinks this rotated data according to the eigenvalues of
the eigenvalues of signal-to-noise ratio matrix, and finally U rotates the data back
to its original axes. Note that D(IT + D)−1 is indeed a shrinkage term because
D(IT + D)−1 = diag(d1/(1 + d1), . . . , dT/(1 + dT )) and dt/(1 + dt) ∈ [0, 1) for all
t ≤ T . Since both U and D(IT + D)−1 depend on Λ, the choice of Λ determines the
direction and magnitude of shrinkage. This is in contrast with the univariate case,
where tuning λ just determines the magnititude of shrinkage.

One class of shrinkage estimators I consider is θ̂(µ,Λ) := (θ1(µ,Λ)′, . . . , θ̂j(µ,Λ))′,
indexed by the hyperparameters (µ,Λ). This class of estimators includes the con-
ventional EB methods, where one proceeds by substituting an “estimator” (µ̂EB, Λ̂EB)

for (µ,Λ). This is done by using the marginal distribution of the data implied by
the hierarchical model, yj

indep∼ N(µ,Λ + Σj), either by maximum likelihood or the
method of moments. I denote the EB maximum likelihood estimator (EBMLE) by
θ̂EBMLE = θ̂(µ̂EBMLE, Λ̂EBMLE) where (µ̂EBMLE, Λ̃EBMLE) is tuned by maximizing this
marginal likelihood. I also consider another larger class of estimators where each yj
is shrunk toward a different location for each j, where this location depends on some
auxiliary data. This extension is useful when one has additional covariates that can
explain yj. In the teacher value-added model, this is the case when teacher level

11Guarino et al. (2015) provides a review (and evaluation) of the shrinkage methods used in the
literature.
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covariates are available.
The risk of an estimator θ̂ of θ is measured by the compound MSE,

R(θ, θ̂) = 1
J
Eθ(θ̂ − θ)′(θ̂ − θ),

where the term “compound” highlights the fact that risks across the independent
experiments are aggregated.12 While I consider only the unweighted case for expo-
sitional reasons, all results go through under the weighted compound MSE as long
as the weights satisfy a mild boundedness condition, as shown in Appendix C. In
Section 5.1, I consider a special case of such weights that has admit an intuitive in-
terpretation. The expectation Eθ is evaluated at θ, and the subscript θ is omitted
unless ambiguous otherwise.

3.2 Risk estimate and URE estimators

Given the risk criterion, an optimal yet infeasible way to tune the hyperparameters is
by minimizing the risk. Of course, this is infeasible because the risk function depends
on the true mean vectors, which are unknown. I take an approach of estimating the
risk, using Stein’s unbiased risk estimate (SURE), and choosing the hyperparameters
by minimizing this risk estimate. The idea of minimizing SURE to choose tuning
parameters has been around since at least Li (1985). The approach has been taken
recently in, for example, Xie et al. (2012, 2016), Kou and Yang (2017), Brown et al.
(2018), and Abadie and Kasy (2019).

To obtain a risk estimate, consider the following unbiased risk estimate which is
the SURE formula applied to the estimator θ̂(µ,Λ),

URE(µ,Λ)

:=
1

J

J∑
j=1

(
tr(Σj)− 2 tr((Λ + Σj)

−1Σ2
j) + (yj − µ)′[(Λ + Σj)

−1Σ2
j(Λ + Σj)

−1](yj − µ)
)
,

where I define the summand as UREj(µ,Λ). It is easy to show that EURE(µ,Λ) =

R(θ̂(µ,Λ), θ), and thus URE(µ,Λ) is indeed an unbiased estimator of the true risk.
While SURE applies to any estimator that takes the form yj + g(yj) with g being

12This term originates from what Robbins (1951) referred to as the “compound statistical decision
problem” in the context of a simple normal means problem.
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weakly differentiable, normality of yj is crucial for the unbiasedness to hold for all
such estimators. However, the function g corresponding to θ̂(µ,Λ) is in fact a simple
affine function, so that the unbiasedness can be established by a simple bias-variance
expansion. Accordingly, the unbiasedness of URE(µ,Λ) holds without any distribu-
tional assumptions on yj, apart from the existence of second moments.

Clearly, unbiasedness itself will not guarantee that the estimator obtained by
minimizing the risk estimate has good risk properties. In the next section, I show
that URE(µ,Λ) is in fact uniformly close to the true risk, in the sense that minimizing
this risk estimate is as good as minimizing the true loss, asymptotically.

I propose three shrinkage estimators that are closely related but differ in the
location to which they shrink the data. The estimators are introduced in increasing
degrees of freedom. All three estimators are obtained by minimizing a corresponding
URE, and thus I refer to such estimators as URE estimators.

Grand mean. The first estimator, which is the simplest, takes µ = yJ := 1
J

∑J
j=1 yj

and thus shrinks the data toward the grand mean. The grand mean is an intuitive
location to shrink to, and by fixing a value for µ this method effectively decreases the
dimension of the hyperparameters. In the context of fixed effects, if the least squares
estimators are demeaned for each time period, it follows that yJ = 0. Hence, the
estimator shrinks the data toward the origin. Most shrinkage estimators used in the
teacher value-added literature shrink the least squares estimator toward the origin.
Formally, this estimator is defined as θ̂URE,m := θ̂(yJ , Λ̂

URE,m), where

Λ̂URE,m := arg min
Λ∈L

URE(yJ ,Λ).

General location. The second estimator leaves µ (almost) unrestricted and chooses
the location by minimizing the URE. For theoretical reasons, it is not possible to
allow for any µ ∈ RT as the centering location. The hyperparameter space for µ
must be restricted so that a certain boundedness property holds. Following a similar
idea used by Brown et al. (2018), I restrict µ to lie in

MJ := {µ ∈ R : |µt| ≤ q1−τ ({|yjt|}Jj=1) for t = 1, . . . , T},

where q1−τ ({|yjt|}Jj=1) denotes the 1− τ sample quantile of {|yjt|}Jj=1.13 I recommend

13See, for example, Chapter 21 of van der Vaart (1998) for a formal definition.
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choosing a small τ , such as τ = .01. This restricts the centering term, component-wise,
to be somewhere smaller than the 99 percentile of the data in terms of magnitude.
I argue that this restriction is reasonable, because it seems rather hard to justify
shrinking the data toward a point where there are almost no observations. In fact,
this constraint is never binding in any of the simulation iterations reported in Section
6. This URE estimator that shrinks towards a general location, θ̂URE,g, is defined as
θ̂URE,g = θ̂(µ̂URE, Λ̂URE,g), where

(µ̂URE, Λ̂URE,g) := arg min
µ∈MJ ,Λ∈L

URE(µ,Λ).

Linear combination of covariates. The last estimator can be used in the presence
of additional data, Zjt ∈ Rk that is thought to explain θjt. In the linear panel data
model, these are exactly the covariates that could not be included as explanatory
variables because of the (j, t)-level fixed effects. Write Zj = (Zj1, . . . , ZjT )′. I consider
the estimator that shrinks the data toward Zjγ,

θ̂cov
j (γ,Λ) :=

(
IT − Λ(Λ + Σj)

−1
)
Zjγ + Λ(Λ + Σj)

−1yj,

where now γ and Λ are hyperparameters to be tuned.14 I denote by θ̂cov(γ,Λ) the
JT vector obtained by concatenating θ̂cov

j (γ,Λ) for j ≤ J . Define UREcov
j (γ,Λ) =

UREj(Zjγ,Λ) and the compound risk estimate UREcov(γ,Λ) = 1
J

∑J
j=1 UREcov

j (γ,Λ).
Then, the estimator is defined as θ̂URE,cov = θ̂cov(γ̂URE, Λ̂URE,cov), where

(γ̂URE, Λ̂URE,cov) := arg min
γ∈ΓJ ,Λ∈L

UREcov(γ,Λ).

Again, ΓJ is a hyperparemeter set that incorporates restrictions to ensure that URE
approximates the true loss well:

ΓJ := {γ ∈ Rk : ‖γ‖ ≤ B‖γ̂OLS‖},

where B is a large constant that does not depend on J , and γ̂OLS is the pooled OLS
estimator obtained by regressing yj on Xj, i.e., γ̂OLS = (

∑J
j=1 Z

′
jZj)

−1
∑J

j=1 Z
′
jyj.

The idea is to include the intuitive OLS, and potentially coefficients with much larger
14This estimator is the Bayes estimator under a second level model where the θj is normally

distributed with mean Zjγ, i.e., θj |Zj ∼ N(Zjγ,Λ).
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magnitude as well. In simulations, I use B = 103 and this constraint never binds.

Example 3.4 (Teacher value-added). In teacher value-added, teacher (or teacher-
year) level covariates are frequently available. Such covariates cannot be used in
the initial regression due to the inclusion of the teacher fixed effects. However, one
can use such covariates to improve the precision of the teacher fixed-effect estimates.
Frequently available teacher level covariates include, for example, gender, tenure,
and union status of a teacher. Asymptotically, the inclusion of such covariates are
guaranteed to improve the MSE. Furthermore, this improvement does not require
that the true fixed effects are related with the covariates in a linear fashion. These
last two points are made more clear in the next section.

While I only consider the simple case of shrinking toward a linear combination of
the covariates where the linear combination is defined by the same coefficient γ for
all time periods, the estimator can be extended in a straightforward manner to allow
different coefficients γt ∈ Rk for each time period t. In this case, yj is shrunk toward
(Z ′j1γ1, . . . , Z

′
jTγT )′. The optimality property to be shown in Section 4 can also be

extended to this case with only minor modifications.
Another interesting extension of this estimator is to shrink toward a more general

function of the covariates.15 That is, for a function m : Rk → R, one can consider
shrinking to (m(Zj1), . . . ,m(ZjT ))′. The linear case corresponds to the choice m(z) =

z′γ. As long as the hyperparameter space form is totally bounded and satisfies certain
regularity conditions, the resulting URE estimator can be shown to optimal in this
more flexible class of estimators as well. In practice, one chooses the hyperparameter
by minimizing the URE over a sieve space that converges to the hyperparameter space
as J →∞.

Remark 3.1 (Choice of the estimator). Under some conditions, the three classes cor-
responding to θ̂URE,m, θ̂URE,g, and θ̂URE,cov are nested. While yJ does not necessarily
lie inMJ , mild regularity conditions on the data ensure that this happens with prob-
ability approaching 1. Also, for an appropriate choice of the constant that defines ΓJ

and including time dummies as covariates, the class of estimators that shrink toward
a general location is nested by those that shrink toward Zjγ. Hence, as J → ∞,
θ̂URE,cov is guaranteed to have the smallest risk among the three, according to the

15Ignatiadis and Wager (2020) consider an estimator of the same form for the case where T = 1,
but with a different focus.
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optimality result given in the following section. However, this does not guarantee
that this is the case in finite samples, and this estimator requires additional data.
As a rule of thumb, I recommend using θ̂URE,cov if covariates are available, θ̂URE,g if
covariates are unavailable and one has at least a moderate sample size (simulation
results imply J > 200 is enough for T = 4), and θ̂URE,m otherwise.

3.3 Computation

The URE estimators involve solving a minimization problem over Λ ∈ L, along
with possibly an additional hyperparameter that governs the centering term. For
concreteness, I consider the estimator θ̂URE,g and take L = S+

T .
The minimization problem that must be solved is

inf
Λ∈S+T ,µ∈MJ

URE(µ,Λ).

For a fixed Λ, minimization with respect to µ is a quadratic programming program
with bound constraints, which is a well understood problem with a number of efficient
algorithms readily available. Hence, to utilize this quadratic structure with respect to
µ, I profile out µ by solving this quadratic programming problem. Writing µ∗(Λ) :=

infµ URE(µ,Λ), the problem is to now solve

inf
Λ∈S+T

URE(µ∗(Λ),Λ).

This is a nonconvex optimization problem with nonlinear constraints, where the non-
linearity of the constraints is due to the restriction that Λ is positive semidefinite. I
transform this to a unconstrained problem by using the Cholesky decomposition by
defining f(L) := URE(µ∗(LL′), LL′) and minimizing f over all lower triangle matrices
L (i.e., over RT (T+1)/2).16 Using Quasi-Newton methods such as the BFGS algorithm
works well on this transformed problem, finding the minimum within reasonable time
without being sensitive to the initial point.

Each evaluation of the objective function involves calculating the inverse of (Λ +

Σj)
−1 for all j. That is, each evaluation involves inverting a T × T matrix J times,

16I note that this is not a common approach when optimizing over the positive definite cone, S+T ,
possibly due to the fact that such transformation makes the problem “more nonlinear.” Nonetheless,
this approach works very well for the current problem.
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which is unavoidable.17 Since even the state-of-the-art algorithms have computa-
tional complexity around O(T 2.4) for inverting a T × T matrix, the computation
burden increases quickly with T (and with J , of course, but to a much lesser extent).
Nonetheless, the computation is not an issue for moderately large T . In the empirical
example with around J = 1, 200 and T = 6, calculating θ̂URE,g takes around 100
seconds on a single core using the companion R package.

4 Optimality of the URE estimators

I show that the URE estimators defined in Section 3.2 asymptotically achieve the
smallest possible asymptotic MSE among all estimators in the corresponding class.
In particular, this shows that the URE estimators dominate the EB methods, which
has been widely used in applied work. The main step in establishing such optimality
is to show that the corresponding UREs are uniformly close to the true risk. Since I
use an unbiased estimate of risk, this more or less boils down to a uniform law of large
numbers (ULLN) argument. I first establish a simple high-level result for a generic
URE estimator, and verify that the conditions for this high-level result holds for each
of the estimators, under appropriate lower level conditions.

4.1 A generic result

Let ψ ∈ Ψ denote a generic hyperparameter to be tuned, which can be Λ, (µ,Λ),
or (γ,Λ) depending on the choice of the estimator, and let θ̂(ψ), indexed by ψ,
denote the shrinkage estimators in consideration. The hyperparameter space Ψ is
allowed to depend on the observations and to vary with J , as is the case for θ̂URE,g

and θ̂URE,cov. A generic URE estimator is defined as θ̂URE = θ̂(ψ̂URE), where ψ̂URE

minimizes URE(ψ). As a performance benchmark, consider the oracle loss “estimator,”
θ̃OL = θ̂(ψ̃OL), where

ψ̃OL = arg min
ψ∈Ψ

`(θ, θ̂(ψ)).

Note that θ̃OL is not a feasible estimator because it depends on the true θ. However,
it serves as a useful benchmark because it minimizes true loss, for any realized θ, and
thus no estimator can have strictly smaller loss, and risk, than θ̃OL. Hence, I refer to

17The companion R package, FEShR, efficiently implements all matrix inversions and loops in C++.
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R(θ, θ̂(ψ̃OL)) as the oracle risk.
The following simple lemma shows that if URE(ψ) is uniformly close to the true

loss in L1, then the URE estimator has asymptotic risk as good as the oracle.

Lemma 4.1. Suppose supψ∈Ψ |URE(ψ)− `(θ, θ̂(ψ))| L
1

→ 0. Then,

lim sup
J→∞

(
R(θ, θ̂URE)−R(θ, θ̃OL)

)
≤ 0. (5)

Proof. By definition of ψ̂URE, I have URE(ψ̂URE) ≤ URE(ψ̃OL). This gives

`(θ, θ̂URE)− `(θ, θ̃OL)

≤
(
`(θ, θ̂URE)− URE(ψ̂URE)

)
+
(

URE(ψ̃OL)− `(θ, θ̃OL)
)

≤ 2 sup
ψ∈Ψ
|`(θ, θ(ψ))− URE(ψ)|.

Taking expectations and then taking lim supJ→∞ on both sides, the result follows
from the L1 convergence condition.

Remark 4.1. It is worth noting that, under a slightly weaker convergence condition
that requires only convergence in probability, one obtains

lim
J→∞

P
(
`(θ, θ̂URE) ≥ `(θ, θ̃OL) + ε

)
= 0,

which is in fact implied by (5). This result shows that loss of the URE estimator
converges to the oracle loss, in probability.

Because the left-hand side of (5) cannot be strictly negative due to the definition
of the oracle, this in fact shows that the asymptotic risk of the URE estimator is the
same as the oracle under the given convergence assumption. Note that the optimality
result is conditional on a true mean vector sequence {θj}∞j=1 such that the uniform L1

convergence holds. When establishing the L1 convergence for the specific estimators,
I impose conditions on the data {yj}∞j=1 that ensure such convergence indeed holds.

4.2 Establishing optimality

All three estimators, θ̂URE,m, θ̂URE,g and θ̂URE,cov, take the form of

θ̂j(µj,Λ) =
(
IT − Λ(Λ + Σj)

−1
)
µj + Λ(Λ + Σj)

−1yj,
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with different restrictions imposed on µj. Hence, the difference between the URE and
the true loss in all three cases can be written as (see (12) in Appendix A.1 for the
derivation)

1

J

J∑
j=1

(
UREj(µj,Λ)− (θ̂j(µj,Λ)− θj)′(θ̂j(µj,Λ)− θj)

)
=
(

URE(0,Λ)− `(θ, θ̂(0, L))
)
− 2

J

J∑
j=1

(
µ′j(Λ + Σj)

−1Σj(yj − θj)
)
.

(6)

An application of the triangle inequality implies that it suffices to show the absolute
values of the first and second terms of the right-hand side converge to zero. Then,
it follows from Lemma 4.1 that the URE estimators obtain the oracle risk for each
class. The first term, which is the difference between the URE and the loss for the
estimator that shrinks toward zero, does not depend on µj and thus is common for
all three estimators. I first show the convergence of this term, and then establish the
convergence of the second term for each estimator.

The following assumption states that yj’s are independent, the fourth moment of
yj is bounded (uniformly over j), and that the smallest eigenvalue of the variance
of yj is bounded away from zero. I write yj ∼ (θj,Σj) to mean that yj follows a
distribution such that E yj = θj and var(yj) = Σj. The supremum supj is taken over
all j ≥ 1, and likewise for infj. Hence, the assumption imposes conditions on the
sequences {E‖yj‖}∞j=1 and {σT (Σj)}∞j=1.

Assumption 4.1 (Independent sampling and boundedness). (i) yj
indep∼ (θj,Σj),

(ii) supj E‖yj‖4 <∞ and (iii) 0 < infj σT (Σj).

This assumption is maintained throughout the paper. Note that normality is not
required. Accordingly, in the linear panel data model, the idiosyncratic terms are
not required to follow a normal distribution. The independence assumption can be
relaxed further provided a law of large number goes through for y′jyj. In the case
where Σj is diagonal for all j, Assumption 4.1 (iii) boils down to assuming that
var(yjt) is bounded away from zero over j and t. Also, in the case where Σj = Σ

for all j, the assumption trivially holds as long as Σ is invertible. I note that (ii)
implies supj ‖θj‖ < ∞ and supj tr(Σj) < ∞ and that (ii) and (iii) together imply
supj κ(Σj) <∞, which are implications repeatedly used in the proof.
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Example 4.1 (Teacher value-added). In the teacher value-added model, Assumption
4.1 holds if, for example, (a) n ≤ njt ≤ n for all j, t, (b) the true fixed effects are
uniformly bounded in magnitude, and (c) the idiosyncratic error term has bounded
fourth moment. Since the class size of any teacher is clearly bounded, (a) is easily
justified. Typically, the unit of teacher value-added is in standard deviation of the
test score, and the test scores are bounded. Hence, as long as the standard deviation
of the test scores for each year is strictly positive, which is always the case, (b) is
satisfied. The existence of the fourth moment of the idiosyncratic error term, (c), is
a mild regularity condition.

The following theorem shows that Assumption 4.1 is enough to ensure uniform
convergence of the first term of (6).

Theorem 4.1 (Uniform convergence of URE(0,Λ)). Suppose Assumption 4.1 holds.
Then,

sup
Λ∈S+T

∣∣∣URE(0,Λ)− `(θ, θ̂(0,Λ))
∣∣∣ L1

→ 0. (7)

This theorem establishes uniform convergence over the largest possible hyperpa-
rameter space for Λ, S+

T , and thus the convergence over any L ⊂ S+
T follows. Also,

as is clear from the proof, Assumption 4.1 is stronger than necessary. However, I find
this stronger set of assumptions not very restrictive with the advantage of being easy
to interpret.18 The proof essentially boils down to establishing a ULLN argument,
and then verifying uniform integrability to strengthen the convergence mode from
convergence in probability to convergence in L1.19 In fact, Theorem 4.1 implies the
asymptotic optimality of the URE method when the centering parameter µ is taken
to equal zero. With this result in hand, I now establish the optimality of each of
the three URE estimators by showing that the second term of (6) converges to zero
uniformly in L1.

Define the oracle estimators of each class as θ̃OL,m, θ̃OL,g and θ̃OL,cov, which are the
estimators obtained by plugging in the oracle hyperparameters. Specifically, define

18For example, it suffices to assume that the average of E‖yj‖4 satisfies a boundedness condition
rather than the supremum over such quantities. Hence, the optimality results still hold if the data
and the true mean vectors are indeed drawn from a normal distribution.

19The proof technique used in related papers such as Xie et al. (2012, 2016) and Kou and Yang
(2017), of applying an equality due to Li (1986) followed by an application of Doob’s martingale
inequality do not go through here. The main reason is that the matrix hyperparameter Λ governs
the direction of shrinkage as well as the magnitude, whereas there is only a scalar hyperparameter
λ that determines the magnitude of shrinkage in such papers.
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the optimal hyperparameters as

Λ̃OL,m := arg min
Λ∈S+T

`(θ, θ̂(yJ ,Λ)),

(µOL, Λ̃OL,g) := arg min
(µ,Λ)∈MJ×S+T

`(θ, θ̂(µ,Λ)), and

(γ̃OL, Λ̃OL,cov) := arg min
(γ,Λ)∈ΓJ×S+T

`(θ, θ̂cov(γ,Λ)).

The, the corresponding estimators are defined as

θ̃OL,m := θ̂(yJ , Λ̃
OL,m), θ̃OL,g := θ̂(µ̃OL, Λ̃OL,g), and θ̃URE,cov := θ̂cov(γ̃OL, Λ̃OL,cov).

Grand mean. This estimator shrinks the data toward yJ , which corresponds to
taking µj = yJ in the last term of (6). Hence, the convergence result to be established
is

sup
Λ∈S+T

∣∣∣∣ 1J ∑J

j=1
y′J(Λ + Σj)

−1Σj(yj − θj)
∣∣∣∣ L1

→ 0.

Two applications of the Cauchy-Schwarz inequality show that the expectation of the
left-hand side is bounded by

(
E‖yJ‖2

)1/2
(
E supΛ

∥∥∥ 1
J

∑J
j=1(Λ + Σj)

−1Σj(yj − θj)
∥∥∥2 )1/2

.

The limit supremum, as J →∞, of the first term is bounded by Assumption 4.1 (ii).
For the second term, again a ULLN argument can be used to show that this converges
to zero under Assumption 4.1.20

Therefore, under Assumption 4.1, it follows that

lim sup
J→∞

(
R(θ, θ̂URE,g)−R(θ, θ̃OL,g)

)
= 0,

and thus the URE estimator obtains the best possible risk within the class. In par-
ticular, this class includes the EB methods that shrink to zero after demeaning the
fixed effects, and thus establishes that this URE estimator dominates widely used
estimators.

Furthermore, the URE estimator also can be shown to dominate the unbiased
20I show this in the proof of Theorem 4.2 because the same term appears there as well.
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estimator, y, which corresponds to using the least squares estimators without any
shrinkage in the context of fixed effects. This is the maximum likelihood estimator
(MLE) when the distribution of y is assumed normal. With some abuse of terminol-
ogy, I refer to this as the MLE even though I am not assuming normality. Because
there is no Λ ∈ S+

T such that θ̂(yJ ,Λ) = y, the MLE y is not included in the class
of estimators I consider. However, a simple approximation argument can be used to
establish the dominance.

Suppose there is some sequence Λ̃MLE
J such that θ̃MLE = θ̂(yJ , Λ̃

MLE
J ) satisfies

lim
J→∞

∣∣∣R(θ, θ̃MLE)−R(θ, y)
∣∣∣ = 0. (8)

Then, it follows that

lim sup
J→∞

(
R(θ, θ̂URE)−R(θ, y)

)
≤ lim sup

J→∞

(
R(θ, θ̂URE)−R(θ, θ̃MLE)

)
+ lim sup

J→∞

(
R(θ, θ̃MLE)−R(θ, y)

)
≤ 0,

where the last inequality follows due to the optimality of θ̂URE and the assumption on
θ̃MLE. Hence, finding Λ̃MLE

J that satisfies (8) is key to establishing that θ̂URE,m weakly
dominates y. Define D(λ) := diag(λ, . . . , λ), and note that for any fixed J ,

lim
λ→∞

R(θ, θ̂(yJ , D(λ))) = R(θ, y).

Hence, there exists λJ such that
∣∣∣R(θ, θ̂(yJ , D(λJ)))−R(θ, y)

∣∣∣ ≤ 1
J
, and thus taking

θ̃MLE = θ̂(yJ , D(λJ)) satisfies (8). This shows that shrinking the least squares estima-
tor using the URE method cannot do worse than using the least squares estimator,
which is a property that EB methods do not have.

General location. This estimator shrinks the data toward a general data-driven
location µ, with the restriction that µ ∈MJ . The convergence result to be established
is

sup
(µ,Λ)∈MJ×S+T

∣∣∣∣ 1J ∑J

j=1
µ′(Λ + Σj)

−1Σj(yj − θj)
∣∣∣∣ L1

→ 0.

As in the shrinkage to the grand mean case, it follows from Cauchy-Schwarz inequality
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that the expectation of the left-hand side is bounded by

(
E supµ∈MJ

‖µ‖2
)1/2

(
E supΛ∈S+T

∥∥∥ 1
J

∑J
j=1(Λ + Σj)

−1Σj(yj − θj)
∥∥∥2 )1/2

.

As mentioned earlier, it can be shown that the second term converges to zero by a
ULLN argument under Assumption 4.1, which I show in the proof of Theorem 4.2.

To show that the term E supµ∈Mj
‖µ‖2 is bounded, note that

E supµ∈Mj
‖µ‖2 =

∑T
t=1 E q1−τ ({y2

jt}Jj=1)

by the definition ofMJ . Hence, it suffices to show E q1−τ ({y2
jt}Jj=1) = O(1) for each

t ≤ T . To control the sample quantile behavior of {y2
jt}Jj=1, I impose an additional

condition. Write εjt := yjt−θjt so that E εjt = 0 and E ε2
jt = σ2

jt, where σ2
jt denotes the

tth diagonal entry of Σj. Note that σ2
t := supj σ

2
jt <∞ by Assumption 4.1. I assume

that the distribution of εjt belongs to a scale family with finite fourth moments.

Assumption 4.2 (Scale family). For each t, εjt/σjt
i.i.d.∼ Ft for j = 1, . . . , J , where

Ft is a distribution function with finite fourth moments.

Note that the assumption is notably weaker than requiring that the noise vectors
εj for j = 1, . . . , J belong to a multivariate scale family, which restricts the joint
distribution across t in a much more stringent way. Here, I instead require that
the error terms belong to a scale family only for each period. It can be shown
that, by Assumption 4.1, the problem of bounding E q1−τ ({y2

jt}Jj=1) boils down to the
problem of bounding E q1−τ ({(εjt/σjt)2}Jj=1). Then, by Assumption 4.2, this simplifies
to bounding the mean of the sample quantile of an i.i.d. sample. I use a result given
by Okolewski and Rychlik (2001) to derive a bound on this quantity without having
to further impose conditions on the distribution Ft.

Example 4.2 (Teacher value-added). In the teacher value-added example, Assump-
tion 4.2 is satisfied as long as the idiosyncratic error terms are i.i.d across j and have
finite fourth moment. Hence, this assumption is almost always satisfied in teacher
value-added models, or in linear panel data models in general.

The following theorem shows that URE(µ,Λ) is close to the true loss uniformly
over (µ,Λ) ∈MJ × S+

T under this additional assumption.
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Theorem 4.2 (Uniform convergence of URE(µ,Λ)). Suppose Assumptions 4.1 and
4.2 hold. Then,

sup
µ∈MJ ,Λ∈S+T

∣∣∣URE(µ,Λ)− `(θ, θ̂(µ,Λ))
∣∣∣ L1

→ 0.

Again, by Lemma 4.1, this ensures that θ̂URE,g asymptotically obtains the oracle
risk, as stated in the following corollary.

Corollary 4.1. Under Assumptions 4.1 and 4.2,

lim sup
J→∞

(
R(θ, θ̂(µ̂URE, Λ̂URE,g))−R(θ, θ̃OL,g)

)
≤ 0.

Under homoskedasticity (i.e., Σj = Σ for all j ≤ J), the optimal location param-
eter for both the URE estimator and the EBMLE estimator is the grand mean, so
that µ̂URE = µ̂EBMLE = yJ . This is possibly one reason why the grand mean has been
frequently used as the centering location in applied work despite the heteroskedastic-
ity.21 However, under heteroskedasticity, which is frequently the case in the context
of fixed effects, weighing the different observations according to the different vari-
ance matrices Σj (and the hyperparameter Λ) gives better risk properties. Hence,
it is recommended that one uses θ̂URE,g rather than θ̂URE,m unless the sample size is
relatively small, in which case the additional hyperparameters can result in overfitting.

Linear combination of covariates. This estimator shrinks each observation to
a different location, Zjγ, which depends on the covariate. By a similar calculation
given in the case of shrinkage toward a general location, the key step in establishing
optimality is to show

(
E supγ∈ΓJ

‖γ‖2
)1/2

(
E supΛ∈S+T

∥∥∥ 1
J

∑J
j=1 Z

′
j(Λ + Σj)

−1Σj(yj − θj)
∥∥∥2 )1/2

→ 0.

Again, the strategy is to show that the first term is bounded and the second term
converges to zero. Due to the presence of covariates, the second term is different from
that of the previous estimators. Define εj = yj−θj. I make the following assumptions
on the covariates.

21Another plausible explanation is that yJ is an EB method of moments estimator for µ, though
one can obtain an alternative method of moments estimator with smaller variance by weighting
appropriately.
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Assumption 4.3 (Covariates).

(i) {(yj, Zj)}Jj=1 is an independent sample with Zj
i.i.d,∼ PZ ,

(ii) supj σ1(Z ′jZj) <∞ a.s.,

(iii) E[εj|Zj] = 0 and var(εj|Zj) = Σj,

(iv) µZ,2 := EZ ′jZj is nonsingular, and

(v) supj E [‖yj‖4|Zj] <∞ a.s.

Again, the supremums are taken over all j ≥ 1. The independent sampling as-
sumption of (i) is standard. A sufficient condition for (ii) is that there exists some
constant CZ ∈ R such that supj,t‖Zjt‖ < CZ < ∞ almost surely, which amounts
to assuming that the covariates are uniformly bounded. The first and second part
of (iii) are exogeneity conditions for the first and second moments of the noise term,
with respect to the covariates. The full rank condition given in (iv) is standard. The
boundedness condition for the conditional expectation given in (v) is a conditional
version of Assumption 4.1 (ii). Again, the boundedness conditions in (ii) and (v) can
be relaxed to a boundedness condition on the averages of the given quantities.

Note that there is no assumption that states any linear relationship between the
covariate matrix Zj and the true mean θj and/or yj. Hence, there is no such thing as
“misspecification” as long as the exogeneity condition (ii) is met. Some specifications
yield better risk properties than others, but as long as time dummies are included in
the covariates with B being sufficiently large, any specification (choice of covariates)
is guaranteed to improve upon θ̂URE,g asymptotically.

Example 4.3 (Teacher value-added). In the teacher value-added model, Zjt cor-
responds to teacher-year level covariates. The results here show that, while such
covariates could not have been included in the regression formula, such covariates
can be used to obtain more accurate estimators of the fixed effects. The exogeneity
condition, Assumption 4.3 (ii), is satisfied as long as the covariates are strictly exoge-
nous with respect to the idiosyncratic error terms. This was in some sense already
assumed because independence between the fixed effects and the idiosyncratic error
terms was assumed.

Now, with some abuse of notation, I condition on a realization {Zj}∞j=1 and treat
the covariates as fixed. I assume that this fixed sequence satisfies supj σ1(Z ′jZj) <∞,
1
J

∑J
j=1 Z

′
jZj → µZ,2, and supj E [‖yj‖4|Zj] < ∞ which holds for almost all realiza-
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tions due to Assumption 4.3(ii), (iv), and (v), and the strong law of large numbers.
I directly impose these conditions on the fixed covariates in the following theorem,
with the understanding that such conditions follow from Assumption 4.3. The fol-
lowing theorem shows that the URE is uniformly close to the true loss function over
(γ,Λ) ∈ ΓJ × S+

T under this implied assumption on the covariates, along with the
maintained Assumption 4.1.

Theorem 4.3 (Uniform convergence of UREcov(γ,Λ)). Suppose supj σ1(Z ′jZj) <∞,
limJ→∞

1
J

∑J
j=1 Z

′
jZj = µZ,2, and Assumption 4.1 holds. Then,

sup
γ∈ΓJ ,Λ∈S+T

∣∣∣UREcov(γ,Λ)− `(θ, θ̂cov(γ,Λ))
∣∣∣ L1

→ 0.

Again, invoking Lemma 4.1 gives the following corollary, which states the URE
estimator obtains the oracle risk in this context as well.

Corollary 4.2. Suppose supj σ1(Z ′jZj) < ∞, limJ→∞
1
J

∑J
j=1 Z

′
jZj = µZ,2, and As-

sumption 4.1 holds. Then,

lim sup
J→∞

(
R(θ, θ̂cov(γ̂URE, Λ̂URE,cov))−R(θ, θ̃OL,cov)

)
≤ 0.

4.3 Discussion on the optimality results

The optimality of the URE estimators requires only mild conditions on the moments
of the data, which is in contrast with the EB estimators that require stringent distribu-
tional assumptions to obtain optimality properties. Recall that yj and θj correspond
to the least squares estimator and the true fixed effect, respectively, in the context of
fixed effects. The EB estimators are optimal in the sense of Robbins (1964)22 when
1) the normality assumptions for both the least squares estimator and the true fixed
effect hold and 2) the true fixed effect and variance of the least squares estimator are
independent.23

The normality assumption on the true fixed effect is typically difficult to justify.
Some evidence on the violation of such assumption in the context of teacher value-
added is provided in Gilraine et al. (2020). The optimality results here are conditional

22That is, the estimator obtains the Bayes risk under the unknown moments of true fixed effects.
23The second assumption regarding the dependence between the mean and variance of the least

squares estimator is more implicit, but can be seen from the fact that the model for the true fixed
effect does not depend on the variance of the least squares estimator.
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on a sequence of true mean vectors that is only required to satisfy a mild boundedness
condition, and does not rely on such specific distributional assumptions on the true
mean vector. The normality assumption on the least squares estimator can be less
concerning because one can resort to a central limit theorem argument if the class size
njt is somewhat large. However, this is not necessarily the case in many empirical
contexts. For example, there are numerous classes with less than ten students in
the data used in Section 7. The optimality result for the URE estimators imposes
conditions on the moments of the least squares estimator, leaving the distribution
unrestricted.

The independence assumption between the true fixed effect and the variance of
the least squares estimator can be easily violated in empirical settings as well. Since
the variance of the least squares estimator is inversely proportional to the cell size
njt, the assumption is violated if the fixed effect is related with the cell size in some
manner. For example, if teachers with higher value-added teach more students, or if
the size of the class is related to teaching effectiveness, then such independence is un-
likely to hold. Also, if the idiosyncratic error terms are conditionally heteroskedastic
with respect to some observed covariates that are correlated with the fixed effects,
such independence assumption is again violated. No assumption on the relationship
between the mean θj and variance Σj is imposed in establishing the optimality of
the URE estimators, and thus optimality is guaranteed whether or not the true fixed
effect and the variance of the least squares estimators are independent.

It is worth mentioning that the nonparametric EB literature (Jiang and Zhang,
2009; Brown and Greenshtein, 2009; Koenker and Mizera, 2014) provides an alter-
native method to relax the normality assumption of the true mean, which has been
adopted by Gilraine et al. (2020) to the teacher value-added setting. In the nonpara-
metric EB setting, the distribution of the true fixed effect is remained unspecified
except for certain regularity conditions. This allows for a significantly wider class
of estimators than the class I consider. I view this approach as complementary to
the URE approach for two main reasons. First, with time-varying fixed effects the
nonparametric EB approach involves solving an optimization problem where the ar-
gument is a function of T variables, which makes computation very difficult for even
moderate values of T . Moreover, the risk properties of the currently available non-
parametric EB methods still rely on an independence assumption between the true
fixed effect and the variance of the least square estimator and a normality assumption
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on the least squares estimators.

Remark 4.2 (Unbalanced panel). While it has been assumed that the given panel
data is balanced at the (j, t)-level, this is rarely the case in empirical applications.
For example, in teacher value-added, only some of the teachers are observed for the
entire time span of the data and others appear only in some of the school years. The
URE estimators and their optimality can be naturally extended to incorporate this
unbalanced case. See Appendix B for details.

5 Summarizing the time trajectory

While the time-varying fixed effects gives more flexibility and contains more informa-
tion, in some empirical contexts it is still desirable to have a scalar quantity for each
j that summarizes the fixed effect for unit j. For example, in teacher value-added,
a scalar that summarizes the value-added for each teacher is necessary to rank the
teachers. To this end, I provide two methods that give a summary of the time tra-
jectory of the fixed effects: estimating a weighted mean over time and forecasting
the one-period-ahead fixed effects. Again, in the context of teacher value-added, the
former provides a summary of a teacher’s past performance, and the latter provides
a prediction on how well a teacher is expected to do in the following year.

The estimators are derived using a similar idea as in the problem of estimating
the full vectors: restrict the class of parameters using an appropriate model and tune
the hyperparameters by minimizing a risk estimate. The hyperparmeters are tuned
in a way that the MSE of the estimator for the weighted mean/or one-period-ahead
fixed effects are optimal, rather then aiming for the MSE optimality for the problem
of estimating the entire vector.

5.1 Estimating weighted means

The first, more simple way to summarize the time-varying fixed effects as a scalar is
reporting a weighted mean of θj rather than the full vector. Let w = (w1, . . . , wT )′ ∈
RT denote a weight vector such that wt ≥ 0 and

∑T
t=1 wt = 1 which represents the

weight that is of interest. That is, the parameter of interest is now (w′θ1, . . . , w
′θJ)′.

Again, the class of estimators is restricted by postulating θj
i.i.d.∼ N(µ,Λ) on top of a

normality assumption on yj. The posterior mean of w′θj under this model is given
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as E[w′θj|y] = w′θ̂j(µ,Λ), which is simply a weighted version of θ̂j(µ,Λ). The loss
function for this class of estimators is given as

1

J

J∑
j=1

(w′θ̂j(µ,Λ)− w′θj)′(w′θ̂j(µ,Λ)− w′θj)

=
1

J

J∑
j=1

(θ̂j(µ,Λ)− θj)′ww′(θ̂j(µ,Λ)− θj),

which is simply weighted versions of the loss function used for the estimation of full
vectors with weight matrixW := ww′. For example, when the interest is in the simple
average over time, one can take w = 1T .

Appendix C provides a URE, UREW (µ,Λ), for this weighted loss function (and
for more general weighted loss functions) and some details on how the URE estimator
derived by minimizing this URE obtains the oracle risk under the class of estimators.
I note that the tuning parameter that is optimal for the full vector estimation is not
necessarily optimal for the estimation of weighted means.

5.2 Forecasting θT+1

Another succinct summary of the time trajectory is the forecast for the fixed effects
of period T + 1. This forecasting problem is of independent interest as well. The
problem is to predict θT+1 = (θ1,T+1, . . . θJ,T+1)′ with only the T period data in hand.
The approach is similar to the URE approach taken for estimation problem. I derive
a class of predictors using a hierarchical model, and tune the hyperparameters by
minimizing a unbiased prediction error estimate (UPE). For this reason, the resulting
forecasts are referred to as UPE forecasts.

Consider the second level model θj ∼ N(0,Λ) centered at zero. Here, I consider
the case where the fixed effects are demeaned so that the fixed effects are assumed be
drawn from a distribution centered at zero. Write the block matrices of the tuning
parameter Λ and the variance matrix Σj as

Λ =

(
Λ−T ΛT,−T

Λ′T,−T λT

)
,Σj =

(
Σj,−T Σj,T,−T

Σ′j,T,−T Σj,T

)
=

(
Σj,1 Σ′j,1,−1

Σj,1,−1 Σj,−1

)

where Λ−T , Σj,−T and Σj,−1 are (T − 1) × (T − 1) matrices. From the property
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of positive semidefinite matrices, Λ is positive semidefinite if only if ΛT is positive
semidifinite and Λ−T ≥ 1

λT
ΛT,−TΛ′T,−T .

Here, the hyperparameter space is restricted to some bounded set L ⊂ S+
T . A

recommended choice of L is to take

L :=

{
Λ ∈ S+

T : σ1(Λ) ≤ Kσ1

(
1

J

∑J

j=1
yjy
′
j

)}
for some large number K that does not depend on J . The motivation is that, under
the hierarchical model, 1

J

∑J
j=1 E yjy

′
j = Λ + 1

J

∑J
j=1(θjθ

′
j + Σj), and thus 1

J

∑J
j=1 yjy

′
j

gives a sense of the scale of Λ. By multiplying by a large number K, the bound is
made less restrictive. In the empirical application, I use K = 100 and this constraint
does not bind.

The aim is to tune the hyperparameter in a way that it minimizes prediction error
of predicting θT+1 := (θ1,T+1, . . . , θJ,T+1)′. However, the difficulty here is that an
unbiased estimator of this prediction error is unavailable because we do not observe
anything for period T + 1. Hence, the strategy is to tune the hyperparameters by
considering the problem of predicting θT = (θ1T , . . . , θJT )′ using only the first T − 1

periods of data. Then, under a suitable stationarity assumption, I extrapolate and
use this hyperparameter to predict θT+1.

First, consider the problem of forecasting θT with only the data from the first T−1

periods. Define yj,−t = (yj1, . . . , yj,t−1, yj,t+1, . . . yj,T )′ and y−t = (y′1,−T , . . . , y
′
J,−T )′ to

be the vectors yj and y, respectively, with the observations corresponding to period
t removed. The class of estimators I consider is again the posterior mean implied by
the hierarchical model,

E[θjT |y−T ] = Λ′T,−T (Λ−T + Σj,−T )−1yj,−T .

Define B(Λ,Σ−T ) = (Λ−T + Σ−T )−1ΛT,−T . The performance criterion is the mean
prediction error, EPE(Λ;T ), where

PE(Λ;T ) := 1
J

∑J
j=1(B(Λ,Σj,−T )′yj,−T − θjT )2.

Ideally one would choose Λ to minimize PE(Λ;T ). However, this prediction error
depends on the true parameters, and thus this strategy is infeasible. Again, I derive
an estimator of the prediction error and choose Λ by minimizing this. Some algebra
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shows (see the first couple paragraphs of Appendix A.4)

E[(B(Λ,Σj,−T )′yj,−T − θjT )2]

=E[(B(Λ,Σj,−T )′yj,−T − yjT )2]− ΣjT + 2B(Λ,Σj,−T )′Σj,T,−T .

Therefore, an unbiased estimator of the mean prediction error is given as

UPE(Λ) =
1

J

J∑
j=1

(
(B(Λ,Σj,−T )′yj,−T − yjT )2 − ΣjT + 2B(Λ,Σj,−T )′Σj,T,−T

)
.

Define Λ̂UPE as the Λ that minimizes URE(Λ). The proposed estimator for θj,T+1 is
B(Λ̂UPE,Σj,−T )′yj,−1.

Remark 5.1 (Estimator of Chetty et al., 2014a). Here, I have been considering
predicting θT with the first the observations from the first T − 1 periods. However,
more generally, one can also consider predicting θt with all observations except for
the period t observation. If Σj = Σ with Σ being diagonal, it can be shown that
the Λ minimizes UPE(Λ) gives B(Λ,Σ−t) = β̂OLS,t, which is the OLS estimator of
regressing yjt on yj,−t. Hence, one estimates θjt with y′j,−tβ̂OLS,t, which is exactly the
estimator used in Chetty et al. (2014a).

Recall that the goal is to forecast θT+1, not θT . Hence, the goal is to show that
UPE(Λ) is a good estimator of the prediction error for the problem of predicting θT+1,

PE(Λ;T + 1) =
1

J

J∑
j=1

(B(Λ,Mj,−1)′yj,−1 − θj,T+1)2.

By essentially the same argument made by Lemma 4.1, if

sup
Λ∈L
|UPE(Λ)− PE(Λ;T + 1)| L

1

→ 0, (9)

the mean prediction error of the estimator obtained by minimizing UPE(Λ) obtains
the oracle mean prediction error, which is the mean prediction error of the estimator
that minimizes PE(Λ;T + 1).

For (9) to hold, a suitable stationarity assumption is necessary. To this end,
suppose that

{
((θ′j, θj,T+1)′,Σj)

}∞
j=1

is a random sample drawn from the density
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f(θ′,θT+1)′,Σ. First, since I now treat the mean vector and variance matrices as random,
I impose the following assumption to ensure that the distribution of the mean and
variance parameters is consistent with Assumption 4.1. Let fΣ denote the marginal
density of Σj and supp(fΣ) the support of fΣ.

Assumption 5.1 (Assumption 4.1 with random parameters).

(i) yj|θj,Σj
indep∼ (θj,Σj),

(ii) supj E[‖yj‖4|θj,Σj] <∞, and

(iii) supp(fΣ) ⊂ {Σ ∈ S+
T : σT (Σ) > σΣ} for some σΣ > 0.

To state the stationarity assumption, let fθ,Σ−T
and f(θ′−1,θT+1)′,Σ−1

denote the
marginal densities that correspond to (θj,Σj,−T ) and ((θ′j,−1, θj,T+1)′,Σj,−1), respec-
tively. The following assumption states that the distributions of (θj,Σj,−T ) and
((θ′j,−1, θj,T+1)′,Σj,−1) are the same.

Assumption 5.2 (Stationarity). fθ,Σ−T
= f(θ′−1,θT+1)′,Σ−1

.

I emphasize that this assumption does not imply that the observations are mean
stationary or variance stationary. Moreoever, this stationarity assumption on the
joint distribution of the mean and variance does not impose any restriction on the
dependence structure between the two, and thus the corresponding optimality result
does not require independence of the mean and variance of yj.

The following theorem shows that these two assumptions are enough to ensure that
(9) holds almost surely, where the almost sureness is with respect to the randomness
of the sequence

{
((θ′j, θj,T+1)′,Σj)

}∞
j=1

.

Theorem 5.1. Under Assumptions 5.1 and 5.2,

sup
Λ∈L
|UPE(Λ)− PE(Λ;T + 1)| L

1

→ 0,

almost surely.

6 Simulation results

I carry out a simulation study to assess the finite sample performance of the URE
estimators. I focus on experimenting the performance of the “shrinking to a general
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location” estimator θ̂URE,g with T = 4 and τ = .05. The simulation study implies four
main takeaways.

First, the MSE of the URE estimator gets close to the oracle risk with moderately
large sample sizes. Across all data generating processes (DGPs) I have considered,
the MSE of the URE estimator was less than 10% greater than the oracle risk as long
as the sample size J is greater than 600. This shows that while all optimality results
are only asymptotic, the sample size required to reach the oracle is not very large.

Second, there are numerous scenarios were the URE estimator shows significantly
better performance than the EBMLE. This is largely expected, but still the magnitude
is somewhat surprising, because there are cases where the URE estimator reduces the
MSE of the EBMLE by more than 80%. Such improvements are most largest when
there is a dependence structure between θj and Σj.

Third, the URE estimators perform almost as well as the EBMLE when the DGP
satisfies or is close to satisfying the EB assumption. Even for such DGPs the risk of
the URE is less than 5% greater even for small sample sizes such as J = 100. This
is reassuring, because a concern about robust methods such as the URE estimator is
that they may sacrifice performance too much under more typical assumptions for the
sake of guarding against violations of such typical assumptions (the EB distributional
assumptions in this case). The numerical results show that this is not the case.

Lastly, the URE estimator dominates the MLE, y, across all scenarios by a signif-
icant margin. The MLE is a useful benchmark, because regardless of the DGP, it is
still an unbiased estimator of θ and a very natural one as well. However, simulation
results show that it is almost always a good idea to use the URE estimator over the
MLE, when the aim is to minimize MSE.

Figure 1 shows the simulation results for the four main scenarios.In the first
Normal-Normal scenario, the true mean vectors are drawn from a normal distribu-
tion, θj

i.i.d.∼ N(0, IT ), the variance matrix from a Wishart distribution, Σj = 1
30

Σ̃j

where Σ̃j
i.i.d.∼ Wishart(Σ0, 30) with

Σ0 :=


1 .75 .5 .25

1 .75 .5

1 .75

1

 ,
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(a) Normal-Normal
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(c) Normal-Normal with group structure
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(d) Conditional Heteroskedasticity

Figure 1: Simulation results for the four main scenarios. Each plot has a black line
and red lines, which correspond to the MSE of the URE and EBMLE, respectively,
as a fraction of the oracle MSE. The x-axis is the sample size from J = 100 to 1000.
The dotted line is a horizontal line at 1.1 plotted to see when the MSE of the URE
gets within 10% of the oracle.
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and yj
indep∼ N(θj,Σj). This is a scenario where the distributional assumptions for EB

are exactly met. As expected, EBMLE performs well, getting within 10% of the oracle
with sample size as small as J = 100. The URE estimator shows good performance
as well, with the difference in MSE with EBMLE being within 2% across all sample
sizes.

The DGP of the Uniform-Normal scenario is the same as the Normal-Normal
scenario except that θjt∼Unif[0, .5t], drawn independently across both j and t. This
DGP slightly violates the EB assumptions because the mean parameters are drawn
from a uniform distribution rather than a normal distribution, but otherwise satisfies
the distributional assumptions imposed by EB. The result is similar to the Uniform-
Normal case, with the EBMLE performing very well, and the URE estimator showing
a very slightly higher MSE than the EBMLE.

The third DGP is similar to the Normal-Normal scenario except that there is a
group structure and the mean vectors are serially correlated. Specifically, half of the
sample is drawn from the same DGP as in the Normal-Normal scenario, and the
remaining half is drawn from a similar Normal-Normal scenario but with higher vari-
ance and greater mean. Here, we can think of the DGP as giving a small dependence
structure on the mean and variance through the different groups, and thus the EB
assumption is violated. Here, the URE estimator still performs well, getting within
10% of the oracle as soon as J = 400. However, the EBMLE shows MSE significantly
higher then the URE, and has about twice the MSE when J = 103. The blue line cor-
responds to the oracle risk when the correlation structure is ignored and thus restricts
the hyperprameter space to L = {diag(λ1, . . . , λ4) : λt ≥ 0}.24 Ignoring the possible
correlation inflates the MSE by around 50%, showing the importance of taking such
information into account.

In the last DGP, there are covariates Xjt ∈ R2 drawn from a uniform distribution
that affects both θj and Σj. Hence, here the mean and variance are dependent
through the covariates, which again violates the EB assumption. The mean and
variance are set as θjt = X ′jtβ + Ujt and Σj = DjΣ0Dj with Ujt

i.i.d.∼ Unif[0, .3] and
Dj = diag(X ′j1γ, . . . , X

′
jTγ). Here, the URE estimator still performs fairly well, with

MSE not exceeding the oracle by more than 60% for even smaller sample sizes and
getting within 10% of the oracle when J = 600. However, the EBMLE shows poor

24The mean vectors in the other scenarios are independent across time, and thus this blue line is
not included in the corresponding plots.
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Figure 2: Results from all scenarios. The two plots aggregate the simulation results
from all DGPs considered. The left figure is a scatter plot of the MSE of the URE
estimator against that of the EBMLE. The color of the dots show the sample size,
from J = 100 to J = 103 in increments of 100, with lighter indicating smaller sample
size. The right figure is a scatter plot of the MSE of the URE estimator against the
oracle MSE.

performance. It shows MSE twice as large as the MSE of the URE estimator for
J = 100, and is three times larger for larger J . Moreover, if the estimator θ̂URE,cov

is used to incorporate the covariates, the risk can be reduced by more than 60%
compared to θ̂URE,g.

Finally, I show two more plots that gather the results from all DGPs I have
considered. Figure 2a is a scatter plot of the MSE of the URE estimator against the
MSE of the EBMLE. The plot shows that while there are some cases where the URE
estimator shows slightly higher MSE when the sample size is smaller, the difference
vanishes as the sample size gets larger. The majority of the dots lie on top of the
45-degree line, implying that the MSE of the URE estimator is smaller across most
scenarios. Figure 2b is a similar scatter plot but now the y-axis is the oracle risk
rather then the EBMLE risk. By definition of the oracle risk, there can be no dots on
top of the 45-degree line. While the lighter blue dots are sometimes a little bit away
from the 45-degree line, as the sample size grows larger (i.e., the dots get darker) they
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get close to the 45-degree line. In particular, all dots that correspond to J = 103 are
positioned fairly close to the 45-degree line, showing that the MSE of the URE gets
close to the oracle across all scenarios.

7 An application to teacher value-added

In this section, I use the proposed methods to estimate the teacher effects on student
achievement (i.e., teacher value-added) in the public schools of New York City (NYC).
The literature on teacher value-added have used shrinkage methods extensively due to
the nature of the data in this setting–presence of many teachers but only a moderate
number of students per teacher–that leads to noisy measures of teacher fixed effects.
For a thorough review on the topic, readers are referred to Koedel et al. (2015). I
show that allowing value-added to vary with time and using the URE estimators (and
forecasts) give significantly different empirical results compared to the conventional
approach.

7.1 Baseline model and data

I use a standard teacher value-added model specified as the following simple linear
panel data model introduced in (1):

yijt = X ′ijtβ + αjt + εijt, (10)

where yijt is the (standardized) test score in either english language arts (ELA) or
math and Xijt ∈ R10 is a vector of student characteristics that includes: previous
year’s test score, gender, ethnicity, special education status (SWD), english language
learner status (ELL), and eligibility for free or reduced price lunch (FL). The results
are not sensitive to which covariates are added and/or interacted with other covariates
as long as previous year’s test scores are included. The only main difference from the
standard models in the literature is the additional t subscript on the teacher fixed
effect αjt, which allows the teacher fixed effects to vary with time. The idiosyncratic
error term εijt is i.i.d. across i, j, and t with variance σ2, and is independent with all
other times on the right-hand side of (10).

To estimate the value-added model, I use administrative data on all public schools
of NYC between academic years 2012/2013 and 2018/2019. The data for the 2012/2013

39



academic year is used only to extract the information on the students’ test score for
the previous year, and thus I have T = 6. Importantly, the data includes information
on, among others, student-teacher linkage. As in Bitler et al. (2019), attention is
restricted to 4th and 5th grade students because they are required to take the ELA
(and math) test, and it is easy to link a single teacher to each student for elementary
school students. I carry out the analysis using ELA test scores, but using the math
scores gives similar results. Finally, I restrict the sample to those students whose ELA
teachers were present in all six years of the data. The final data includes J = 1, 185

teachers and 174, 239 student-year observations.
Following standard practice in the literature, the coefficient vector is estimated

using a fixed effects estimator, with the only difference being the level at which
the fixed effects are specified. The signs and magnitudes of each component of the
estimate are in line with the results found in the literature (e.g., Koedel et al., 2015
and Bitler et al., 2019). The estimation results are reported in Table 1 of Appendix
D.1.

7.2 Some observations from the least squares estimator

The least squares estimator for the fixed effect, α̂jt, is the mean of the residuals
corresponding to teacher j and year t. I estimate the variance of the least squares
estimator by σ̂2/njt where σ̂2 is the usual estimator for the variance term obtained
by dividing the sum of squared residuals by the appropriate degrees of freedom, with
a precise definition given in Appendix D.1. In the vast majority of the literature,
teacher value-added is assumed to be time-invariant, and the least squares estimator
for teacher j in this context can be written as α̂j0 = 1

nj

∑T
t=1 njtα̂jt.

25 I make two
preliminary observations regarding the least squares estimators that illustrate 1) there
is significant time variation in the fixed effects and that 2) EB methods are unlikely
to be optimal in the present setting.

The variation of the least squares estimators within teacher is large, hinting that
value-added may vary significantly with time. To see this, I decompose the total
variation of the least squares estimator as the variation of within teacher and across

25Strictly speaking, α̂j is not the least squares estimator the literature has been using, because β
here is estimated with fixed effects specified at the teacher-year level, not at the usual teacher level.
The results presented in this section is not sensitive to this difference with the added advantage of
less notation.
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teachers:

1

JT

J∑
j=1

T∑
t=1

(α̂jt − α̂)2 =
1

J

J∑
j=1

(
1

T

T∑
t=1

(α̂jt − α̂j.)2

)
+

1

J

J∑
j=1

(α̂j. − α̂)2 (11)

where α̂j. := 1
T

∑T
t=1 α̂jt and α̂ = 1

JT

∑J
j=1

∑T
t=1 α̂jt is the average of the least squares

estimator at the teacher level and across all teachers, respectively. The first term
on the left-hand side can be interpreted as the average variation across time and the
second term as the variation across teachers. Calculations show that the average
variation across time accounts for about 51% of the total variation. This implies
there may be significant time variation in the fixed effects, and thus allowing for the
value-added to vary with time can be a more reasonable specification.26

The average number of students per teacher in a single year is around 24.5, with
standard deviation approximately as large as 11.7. This large variation in the number
of students per teacher translates to a large degree of heteroskedasticity of the least
squares estimators, which is one of the reasons that EB methods can be suboptimal
(in frequentist sense). Moreover, an OLS regression of the least squares estimator
(α̂jt) on the corresponding cell size (njt) show that there is a significant positive
relation between the two variables. This implies that the there may be a dependence
structure between the variance of the least squares estimator and the true fixed effect,
which is another potential violation of the EB assumptions.

7.3 Estimation results and policy exercise

Figure 3a shows the distribution of teacher value-added estimates using four different
estimators: the conventional estimator (EBMLE that assumes that value-added does
not vary with time; green), the EBMLE (red) and URE (black) estimators under
time-varying value-added, and the optimal UPE forecast (blue) based on the UPE.27

For the URE and EBMLE estimators under time-varying fixed effects, the average
over time within a teacher is used as a summary of the teacher’s value-added, and
the density plot is for this average rather than the estimate for each time period.
Compared to the least squares estimator (black dashed line), the density of the three

26To my knowledge, the paper by Chetty et al. (2014a) is the only one to allow for time-varying
teacher value-added. The recent analysis by Bitler et al. (2019) implies that allowing for time-
variation can be important.

27The definition of each estimator is given in Appendix D.2.
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Figure 3: Shrinkage results. The plot on the left shows the density of the four different
estimators discussed. The one on the right shows the time trajectory of the average
of value-added estimates for a group of teachers.

estimators excluding the UPE forecast are all more concentrated at the mode, due to
the shrinkage. The density plots show that there is a notable difference between the
conventional method and the estimators that allow for time drifts. Not allowing for
time-varying makes the estimates even more concentrated, and thus the conventional
method gives a distribution more concentrated at the mode.

Moreover, the forecasts generated by minimizing the UPE are considerably more
disperse than any other estimators. This is expected because unlike the other estima-
tors, there is no averaging step in for the forecasts. Note that under the assumption
of the time-invariant fixed effects, the distribution for the forecasts is necessarily the
same as the distribution of fixed effect estimates, because there is no difference be-
tween a teacher’s current or future fixed effect. However, the significant difference
between the blue line and the other lines show that predicting a teacher’s future
value-added by only considering past value-added can be misleading.

Figure 3b shows how the URE estimator shrinks the least squares estimator.28

28Due to data confidentiality issues, both the least squares estimator and the URE estimator are
averages across a number of teachers. However, the shrinkage pattern is the same for individual
teachers.
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Figure 4: Composition of the bottom 5% teachers under different estimators.

While I use the estimator that shrinks toward a general location, the optimal general
location turns out to be close to zero, and thus the URE estimator can be thought to
shrink the least squares toward an imaginary horizontal line at zero. As is clear from
the plots, the URE estimator does not necessarily shrink each component to zero,
but shrinks a smoothed version of the trajectory toward zero.29 The optimal tuning
parameter Λ̂URE has positive off-diagonal terms, which is in line with positive serial
correlation of the true fixed effects. Hence, the estimates for those years with more
extreme values gets shrink towards the common trend making the entire trajectory
smoother. For example, the least squares estimate for 2016 in the upper plot gets
decreased to while that for 2014 gets increased. In contrast, if one does not take
into consideration the possible serial correlation, then the URE estimator shrinks
the least squares estimator toward zero for each time period, resulting in potential
over-shrinkage. This demonstrates the importance of allowing for serial correlation.

A common policy exercise in the literature (Hanushek, 2011; Chetty et al., 2014b;
Gilraine et al., 2020) is to replace the teachers in the bottom 5% in the value-added
distribution with an average teacher. I revisit this policy exercise with a focus on how
the composition of the bottom 5% teachers changes depending on the choice of the

29Nonetheless, the URE estimator is still a shrinkage estimator in the sense that the Euclidean
norm of the estimator is smaller than the least squares estimator.

43



estimator. Figure 4 shows the Venn diagram of the sets of the 60 teachers released
under three different choices of estimators: the conventional time-invariant EBMLE,
URE, and UPE forecasts. By using the URE estimator instead of the conventional
estimator, the composition of the released teachers change by around 24% (14 teach-
ers). Hence, allowing teacher value-added to vary with time significantly changes the
composition of the group of teachers to be released. In contrast, Gilraine et al. (2020)
find that using a flexible nonparametric EB method (under the assumption of time-
invariant value-added) have little effect in the composition of the released teachers.
Hence, allowing time drifts indeed seem to be the driving factor of such change.

In policy settings where future performance of the teachers is more relevant than
the past performance, it is natural to base the decision on forecasts. For example,
if the interest is in maximizing student outcome in the following year, forecasts for
the next period teacher value-added is more informative than a summary of past
performance. When the value-added is allowed to vary with time, one can use the
optimal UPE forecasts in such context. On the other hand, if one specifies value-
added to be time-invariant, past and future value-added are the same by definition,
and thus will release the bottom 5% according to the conventional estimator. The
Venn diagram shows that whether the fixed effects are allowed to vary with time or
not changes the composition of the bottom 5% teachers dramatically, with only 25
teachers (approximately 42%) belonging to this group under both estimators.

Under this context, I also consider an out-of-sample exercise that releases the
teachers according to different estimators based on the first five years of the data.
Then, I calculate the average value-added of the released teachers by taking the
least squares estimator corresponding to the sixth year to be the true value-added.
Again, the set of teachers released under the two estimators (the conventional one and
the forecast) are significantly different, with only a 60% overlap. Importantly, this
change in composition is in the right direction: the average value-added of the released
teachers is 20% lower when the forecast is used compared to when the conventional
estimator is used.

8 Conclusion

I develop new shrinkage estimators for the fixed effects in linear panel data models–the
URE estimators. The fixed effects are allowed to vary with time and to be serially cor-
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related. The estimators are obtained by shrinking the least squares estimators, where
the direction and magnitude of shrinkage is determined by minimizing an estimate of
the risk. They are shown to (asymptotically) dominate conventional estimators under
mild regularity conditions, and does not rely on strong distributional assumptions as
conventional methods do.

While I focus on estimating the fixed effects in a linear panel setting, I emphasize
that the URE method can be applied to any setting where the empirical researcher
has an approximately unbiased estimator for individual/group-level effects. Such ex-
amples include Angrist et al. (2017) and Hull (2020). While the models considered
therein are not strictly linear panel models, the researchers derive an unbiased esti-
mator for the group (school or hospital) effects. Such group effects can be shrunk by
the methods introduced here rather then using EB methods to guard against stronger
distributional assumptions.

A natural direction for future work is to make the class of estimators wider with-
out losing tractability in terms of both theory and computation. In Appendix E, I
show how one can extend the semiparametric shrinkage idea of Xie et al. (2012) to
this setting. While the theory is straightforward for this extension, computation is
extremely difficult and thus additional restrictions are necessary. Another possible
method is to consider the class of estimators implied by the nonparametric EB set-
ting, and taking an URE approach to tune the unknown (nonparametric) distribution
of the true fixed effect. This an open problem that is yet to be solved even in the
case where T = 1. Such extensions will make the optimality result to hold over a
significantly wider class of estimators, further improving the risk property of the URE
estimators.
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Appendix A Proof of main theorems

A.1 Proof of Theorem 4.1

The difference between the URE and the loss is given as

URE(µ,Λ)− `(θ, θ̂(µ,Λ))

=
1

J

J∑
j=1

(
UREj(µ,Λ)− (θ̂j(µ,Λ)− θj)′(θ̂j(µ,Λ)− θj)

)
.

Expanding the summand of the second line gives

UREj(µ,Λ)− (θ̂j(µ,Λ)− θj)′(θ̂j(µ,Λ)− θj)

= tr(Σj)− 2 tr((Λ + Σj)
−1Σ2

j)

+ (yj − µ)′[(Λ + Σj)
−1Σ2

j(Λ + Σj)
−1](yj − µ)

− (yj − θj − Σj(Λ + Σj)
−1(yj − µ))′(yj − θj − Σj(Λ + Σj)

−1(yj − µ))

= tr(Σj)− 2 tr((Λ + Σj)
−1Σ2

j)− (yj − θj)′(yj − θj)

+ 2(yj − µ)′(Λ + Σj)
−1Σj(yj − θj)

=y′jyj − θ′jθj − tr(Σj)− 2 tr(Λ(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

− 2µ′(Λ + Σj)
−1Σj(yj − θj).

(12)

Taking µ = 0, I obtain

UREj(Λ)− (θ̂j(Λ)− θj)′(θ̂j(Λ)− θj)

=y′jyj − θ′jθj − tr(Σj)− 2 tr(Λ(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj)),

where, for simplicity, I write UREj(Λ) as a shorthand for UREj(0,Λ), and likewise
for URE(Λ) and θ̂(Λ). It follows that

sup
Λ

∣∣∣URE(Λ)− `(θ, θ̂(Λ))
∣∣∣ = sup

Λ

∣∣∣∣ 1J ∑J

j=1
(UREj(Λ)− `j(θj, θ̂j(Λ)))

∣∣∣∣
≤
∣∣∣∣ 1J ∑J

j=1
(y′jyj − θ′jθj − tr(Σj))

∣∣∣∣
+ sup

Λ

∣∣∣∣ 1J ∑J

j=1
tr(Λ(Λ + Σj)

−1(yjy
′
j − yjθ′j − Σj))

∣∣∣∣ ,
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where the inequality follows from the triangle inequality. I show that each of the two
terms in the last expression converges to zero in L1.

For the first term, because E y′jyj = θ′jθj + tr(Σj) for all j ≤ J and yj’s are
independent, I have

E

(
1

J

J∑
j=1

(y′jyj − θ′jθj − tr(Σj))

)2

=
1

J2

J∑
j=1

E(y′jyj − θ′jθj − tr(Σj))
2

=
1

J2

J∑
j=1

var(y′jyj).

Therefore, if lim 1
J2

∑J
j=1 var(y′jyj) = 0, then this term converges to zero in L2 and

thus in L1. Assumption 4.1(ii) ensures that this is the case.
For the second term, note that

sup
Λ

∣∣∣∣∣ 1J
J∑
j=1

tr(Λ(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

∣∣∣∣∣
= sup

Λ

∣∣∣∣∣ 1J
J∑
j=1

tr((I − Σj(Λ + Σj)
−1)(yjy

′
j − yjθ′j − Σj))

∣∣∣∣∣
≤

∣∣∣∣∣ 1J
J∑
j=1

(y′jyj − θ′jyj − tr(Σj))

∣∣∣∣∣+ sup
Λ

∣∣∣∣∣ 1J
J∑
j=1

tr(Σj(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

∣∣∣∣∣
=: (I)J + (II)J .

To show that (I)J
L1

→ 0, I again show L2 convergence. Because E(y′jyj − θ′jyj) =

tr(Σj) for all j ≤ J and yj’s are independent, it follows that

E

(
1

J

J∑
j=1

(y′jyj − θ′jyj − tr(Σj))

)2

=
1

J2

J∑
j=1

E(y′jyj − θ′jyj − tr(Σj))
2

=
1

J2

J∑
j=1

var(y′jyj − θ′jyj).

Hence, it suffices to establish that limJ→∞
1
J2

∑J
j=1 var(y′jyj−θ′jyj) = 0. The summand
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is bounded by

var(y′jyj − θ′jyj) ≤ 2 var(y′jyj) + 2θ′jΣjθj ≤ 2 var(y′jyj) + 2 tr(Σj)‖θj‖2
∞.

Hence, if lim supJ→∞
1
J

∑J
j=1(var(y′jyj)+tr(Σj)‖θj‖2

∞) <∞ it follows that (I)J
L2

→ 0. A
sufficient condition for this to hold is that supj var(y′jyj), supj tr(Σj), and supj‖θj‖2

∞

are all finite, which is true by Assumption 4.1 (ii).
To show that (II)J

L1

→ 0, define the random function GJ(Λ) as

GJ(Λ) =
1

J

J∑
j=1

tr(Σj(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

so that the aim is to show supΛ|GJ(Λ)| L1

→ 0. I use the fact that convergence in
probability and a uniform integrability condition imply convergence in L1. That is, I
show supΛ|GJ(Λ)| p→ 0 and that {supΛ|GJ(Λ)|}J≥1 is uniformly integrable.

I show supΛ|GJ(Λ)| p→ 0 by using the results given by Andrews (1992).The results
therein require a totally bounded parameter space. However, the parameter space
in consideration, S+

T , does not satisfy this requirement. This can be dealt with by
an appropriate reparametrization. Let σΣ = infj σT (Σj) denote the infimum of the
smallest eigenvalues of Σj’s for j ≥ 1, which is bounded away from zero by assumption.
Consider the transformation defined by h(Λ) = (σΣIT + Λ)−1, and write the image
of such transformation as L̃ := {h(Λ) : Λ ∈ S+

T }. Note that h : S+
T → L̃ is one-

to-one and onto, with its inverse given as h−1(Λ̃) = Λ̃−1 − σΣIT . For Λ̃ ∈ L̃, define
G̃J := GJ ◦ h−1 so that

sup
Λ∈S+T

|GJ(Λ)| = sup
Λ∈S+T

|GJ(h−1(h(Λ)))| = sup
Λ̃∈L̃
|GJ(h−1(Λ̃))| = sup

Λ̃∈L̃
|G̃J(Λ̃)|.

Hence, showing supΛ|GJ(Λ)| p→ 0 is equivalent to supΛ̃∈L̃|G̃J(Λ̃)| p→ 0. Let ST
denote the set of all real positive T × T matrices. While the choice of metric is
irrelevant, equip ST with the metric d induced by the Frobenius norm for concreteness.
Note that L̃ ⊂ ST . I show that the (reparametrized) parameter space L̃ is indeed
totally bounded. For any Λ̃ ∈ L̃, I have 0 ≤ Λ̃ ≤ σ−1

Σ IT so that σ1(Λ̃) ≤ σ−1
Σ .

Moreover, since the largest singular value equals the operator norm and all norms on
ST are equivalent, this shows that L̃ is bounded, and thus totally bounded because
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L̃ can be seen as a subset of the Euclidean space with dimension T 2.
It remains to show that a) |G̃J(Λ̃)| p→ 0 for all Λ̃ ∈ L̃ and b) G̃J(Λ̃) is stochastically

equicontinuous. For a), I can show |GJ(Λ)| p→ 0 for all Λ ∈ S+
T instead because for

any Λ̃ ∈ L̃, there exists Λ ∈ S+
T such that GJ(Λ) = G̃J(Λ̃). Now, note that

E tr(Σj(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

= tr(Σj(Λ + Σj)
−1 E(yjy

′
j − yjθ′j − Σj)) = 0,

and yj’s are independent. This gives

EGJ(Λ)2 =
1

J2

J∑
j=1

E tr(Σj(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

2

I give a bound on |tr(Σj(Λ + Σj)
−1(yjy

′
j − yjθ′j −Σj))|. Let UDU ′ denote the spectral

decomposition of Σ
−1/2
j ΛΣ

−1/2
j with D = diag(d1, . . . , dT ). Then, I have

Σj(Λ + Σj)
−1 = Σ

1/2
j U(IT +D)−1U ′Σ

−1/2
j .

It follows that

tr(Σj(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

= tr(Σ
1/2
j U(IT +D)−1U ′Σ

−1/2
j (yjy

′
j − yjθ′j − Σj))

= tr((IT +D)−1U ′Σ
−1/2
j (yjy

′
j − θjy′j − Σj)Σ

1/2
j U).

(13)

Write Hj = Σ
−1/2
j (yjy

′
j − yjθ′j − Σj)Σ

1/2
j , and observe that∣∣∣tr((IT +D)−1U ′Σ
−1/2
j (yjy

′
j − yjθ′j − Σj)Σ

1/2
j U)

∣∣∣
=

∣∣∣∣∣
T∑
t=1

1

1 + dt
(U ′HjU)tt

∣∣∣∣∣
≤

T∑
t=1

1

1 + dt
|(U ′HjU)tt|

≤
T∑
t=1

|(U ′HjU)tt| ,

(14)

where the last inequality holds because 0 ≤ 1/(1 + dt) ≤ 1. Let Ut denote the tth
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column of the orthogonal matrix U . I have

|(U ′HjU)tt| = |U ′tHjUt| ≤ ‖HjUt‖ ≤ sup
U∈RT ,‖U‖=1

‖HjU‖ = σ1(Hj),

where the first inequality follows from Cauchy-Schwarz, and the last equality from
the fact that the operator norm of a matrix is equal to its largest singular value.

Combining these results gives

EGJ(Λ)2 ≤ T 2

J2

J∑
j=1

E σ1(Hj)
2.

Now, to derive a bound for σ1(Hj), observe that

σ1(Hj) =σ1(Σ
−1/2
j (yjy

′
j − yjθ′j − Σj)Σ

1/2
j )

≤σ1(Σ
−1/2
j )σ1(yjy

′
j − yjθ′j − Σj)σ1(Σ

1/2
j )

≤κ(Σj)
1/2σ1(yjy

′
j − yjθ′j − Σj).

Since the largest singular value of a matrix is bounded by its Frobenius norm, it
follows that

σ1(yjy
′
j − yjθ′j − Σj)

2

≤ tr((yjy
′
j − yjθ′j − Σj)

′(yjy
′
j − yjθ′j − Σj))

=(y′jyj)
2 + θ′jyjθ

′
jyj + σ4 tr(Σj)

2 − 2y′jyjy
′
jθj − 2y′jΣjyj + 2θ′jΣjyj.

Taking expectations yields

E(y′jyj)
2 + θ′jθj E y

′
jyj + σ4 tr(Σj)

2 − 2E y′jyjy
′
jθj − 2E y′jΣjyj + 2θ′jΣj E yj

= var(y′jyj) + (θ′jθj + tr(Σj))
2 + θ′jθj(θ

′
jθj + tr(Σj))

+ σ4 tr(Σj)
2 − 2θ′j E(yjy

′
jyj)− 2θ′jΣjθj − 2σ4 tr(Σj)

2 + 2θ′jΣjθj

= var(y′jyj) + 2(θ′jθj)
2 + 3θ′jθj tr(Σj)− 2θ′j E(yjy

′
jyj)

≤ var(y′jyj) + 2‖θj‖4 + 3‖θj‖2 tr(Σj) + 2‖θj‖E‖yj‖3.
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This shows that if

lim sup
J→∞

1

J

J∑
j=1

κ(Σj)
(
var(y′jyj) + 2‖θj‖4 + 3‖θj‖2 tr(Σj) + 2‖θj‖E(‖yj‖3)

)
<∞,

(15)
then |GJ(Λ)| → 0 in L2, and thus in probability. Hence, if supj σ1(Σj)/σT (Σj),
supj var(y′jyj), supj|θj|, and supj tr(Σj) are bounded, the result holds. Note that this
true by Assumption 4.1.

It remains to show that G̃J(Λ̃) is stochastically equicontinuous. I do this by
showing that G̃J(Λ̃) satisfies a Lipschitz condition as in Assumption SE-1 of Andrews
(1992). Specifically, I show that |G̃J(Λ̃) − G̃J(Λ̃†)| ≤ BJ‖Λ̃ − Λ̃†‖ for all Λ̃, Λ̃† ∈ L̃
with BJ = Op(1). Let Λ̃, Λ̃† ∈ L̃ be arbitrarily taken. First, I show that L̃ is convex.
Take any α ∈ [0, 1]. Note that αΛ̃ + (1 − α)Λ̃† is nonsingular because Λ̃ and Λ̃†

are positive definite and the space of positive definite matrices is convex. Then, for
Λα = (αΛ̃ + (1− α)Λ̃†)−1 − σΣIT , I have h(Λα) = αΛ̃ + (1− α)Λ̃†, which shows that
αΛ̃ + (1− α)Λ̃† ∈ L̃. The mean value theorem gives

G̃J(Λ̃)− G̃J(Λ̃†) = ∇G̃J(Λ̃α) · vec(Λ̃− Λ̃†),

where ∇G̃J(Λ̃) := ∂

∂vec(Λ̃)
G̃J(Λ̃), and Λ̃α := αΛ̃ + (1− α)Λ̃† for some α ∈ [0, 1]. This

implies, by Cauchy-Schwarz,

|G̃J(Λ̃)− G̃J(Λ̃†)| ≤ ‖∇G̃J(Λ̃α)‖‖Λ̃− Λ̃†‖, (16)

where I use the fact that the Frobenius norm of a matrix and the Euclidean norm
of the vectorized version of it are the same. Note that ‖∇G̃J(Λ̃)‖ = ‖ ∂

∂Λ̃
G̃J(Λ̃)‖ by

definition of the Frobenius norm.
By the formula for the derivative of a matrix inverse and the derivative of a trace,

and the chain rule for matrix derivatives, I have

∂

∂Λ̃
GJ(Λ̃)

=
1

J

J∑
j=1

Λ̃−1(Λ̃−1 − σΣIT + Σj)
−1Σj(yjy

′
j − yjθ′j − Σj)(Λ̃

−1 − σΣIT + Σj)
−1Λ̃−1.

Write the summand in the second line as gj(Λ̃). I first derive a bound on σ1(gj(Λ̃)),
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and use this to bound ‖ ∂

∂Λ̃
GJ(Λ̃)‖ by using the fact that

∥∥∥∥ ∂

∂Λ̃
GJ(Λ̃)

∥∥∥∥ ≤ T 1/2σ1

(
∂

∂Λ̃
GJ(Λ̃)

)
≤ 1

J

J∑
j=1

σ1(gj(Λ̃)).

Since the operator norm is submultiplicative, it follows that

σ1(gj(Λ̃)) ≤ σ1(Λ̃−1(Λ̃−1 − σΣIT + Σj)
−1)2σ1(Σj(yjy

′
j − yjθ′j − Σj)).

I proceed by bounding the two singular values that appear on the right hand side.
For the first term, note that

σ1(Λ̃−1(Λ̃−1 − σΣIT + Σj)
−1)2

=σ1(Λ̃−1(Λ̃−1 − σΣIT + Σj)
−2Λ̃−1)

=σ1((I + Λ̃1/2(Σj − σΣIT )Λ̃1/2)−2)

≤1,

(17)

where the first equality uses the fact that σ1(A)2 = σ1(AA′) = σ1(A′A) for any matrix
A. The last inequality follows because Λ̃1/2(Σj−σΣIT )Λ̃1/2 is positive semidefinite so
that 0 ≤ (I + Λ̃1/2(Σj − σΣIT )Λ̃1/2)−2 ≤ IT , and A ≤ B implies σ1(A) ≤ σ1(B) for
any two positive semidefinite matrices A and B. A bound on σ1(Σj(yjy

′
j−yjθ′j−Σj))

is given by

σ1(Σj(yjy
′
j − yjθ′j − Σj)) ≤ σ1(Σj)(y

′
jyj + (y′jyj)

1/2(θ′jθj)
1/2 + σ1(Σj)).

Combining these results, I obtain

sup
Λ̃∈L̃

∥∥∥∥ ∂

∂Λ̃
GJ(Λ̃)

∥∥∥∥ ≤ 1

J

J∑
j=1

σ1(Σj)(y
′
jyj + ‖yj‖‖θj‖+ σ1(Σj))

=
1

J

J∑
j=1

σ1(Σj)
(
y′jyj + ‖yj‖‖θj‖ − E(y′jyj + ‖yj‖‖θj‖)

)
+

1

J

J∑
j=1

(
E(y′jyj + ‖yj‖‖θj‖) + σ1(Σj)

)
.

56



The term in the second line is op(1) because

supj var(σ1(Σj)(y
′
jyj + ‖yj‖‖θj‖)) ≤ 2 supj σ

2
1(Σj)(E‖yj‖4 + ‖θj‖2 E‖yj‖2) <∞.

The term in the last line is bounded as J → ∞ because the summand is bounded
uniformly over j. This shows that BJ := supΛ̃∈L̃‖

∂

∂Λ̃
GJ(Λ̃)‖ = Op(1). Combining this

with (16) gives
|G̃J(Λ̃)− G̃J(Λ̃†)| ≤ BJ‖Λ̃− Λ̃†‖,

for all Λ, Λ̃ ∈ L̃ and BJ = Op(1), which establishes the desired Lipschitz condition.
This completes the proof for supΛ∈S+T

|GJ(Λ)| p→ 0.
Now, to strengthen the convergence in probability to convergence in L1, I show

that {supΛ|GJ(Λ)|}J≤1 is uniformly integrable. A bound on supΛ|GJ(Λ)| is given by

sup
Λ
|GJ(Λ)| = sup

Λ

∣∣∣ 1
J

∑J
j=1 tr(Σj(Λ + Σj)

−1(yjy
′
j − yjθ′j − Σj))

∣∣∣
≤ 1

J

J∑
j=1

sup
Λ

∣∣tr(Σj(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

∣∣
≤ T

J

J∑
j=1

σ1(Hj)

≤ T

J

J∑
j=1

κ(Σj)(y
′
jyj + ‖θj‖‖yj‖+ σ1(Σj))

where the last inequality follows from (13) and (14). Let GJ denote the expression in
the last line, and suppose that lim supJ→∞EG

2

J < ∞, which I verify below. Then,
I have supJ E(supΛ|GJ(Λ)|)2

< ∞, from which the uniform integrability follows. It
remains only to show that lim supJ→∞EG

2

J < ∞. By Cauchy-Schwarz, it follows
that

E G
2

J ≤
T 2

J

J∑
j=1

E
(
κ(Σj)(y

′
jyj + ‖θj‖‖yj‖+ σ1(Σj))

)2
,

and the term in the summand is uniformly bounded over j ≥ 1. This establishes
lim supJ→∞E G

2

J < ∞, and thus that {supΛ|GJ(Λ)|}J≤1 is uniformly integrable.
This concludes the proof.
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A.2 Proof of Theorem 4.2

All supremums over µ are understood to be taken overMJ , though for simplicity I
write supµ. Observe that, by (12),

sup
µ,Λ

∣∣∣URE(µ,Λ)− `(θ, θ̂(µ,Λ))
∣∣∣

≤ sup
Λ

∣∣∣URE(Λ)− `(θ, θ̂(Λ))
∣∣∣+ sup

µ,Λ

∣∣∣∣∣ 1J
J∑
j=1

µ′(Λ + Σj)
−1Σj(yj − θj)

∣∣∣∣∣ .
Since Theorem 4.1 shows that the first term on the right-hand side converges to zero
in L1, it now remains to show

sup
µ,Λ

∣∣∣∣∣ 1J
J∑
j=1

µ′(Λ + Σj)
−1Σj(yj − θj)

∣∣∣∣∣ L1

→ 0. (18)

By two applications of Cauchy-Schwarz, I have

E sup
µ,Λ

∣∣∣∣∣ 1J
J∑
j=1

µ′(Λ + Σj)
−1Σj(yj − θj)

∣∣∣∣∣
≤ E sup

µ
‖µ‖ · sup

Λ

∥∥∥∥∥ 1

J

J∑
j=1

(Λ + Σj)
−1Σj(yj − θj)

∥∥∥∥∥
≤
(
E supµ‖µ‖2

)1/2

E sup
Λ

∥∥∥∥∥ 1

J

J∑
j=1

(Λ + Σj)
−1Σj(yj − θj)

∥∥∥∥∥
2
1/2

.

(19)

I show lim supJ→∞E supµ‖µ‖2 <∞ and

lim
J→∞

E sup
Λ

∥∥∥∥∥ 1

J

J∑
j=1

(Λ + Σj)
−1Σj(yj − θj)

∥∥∥∥∥
2

= 0,

from which then (18) will follow.
Write HJ(Λ) := ‖ 1

J

∑J
j=1(Λ + Σj)

−1Σj(yj− θj)‖. As in the proof for Theorem 4.1,
I show (a) supΛ HJ(Λ)

p→ 0 and (b) supJ E (supΛHJ(Λ))2+δ < ∞ for some δ > 0.
Since (b) is a sufficient condition for {supΛHJ(Λ)2}J≥1 being uniformly integrable,

(a) and (b) together imply supΛHJ(Λ)
L2

→ 0.
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I show supΛHJ(Λ)
p→ 0 by again using a ULLN argument as in Andrews (1992).

First, to show HJ(Λ)
p→ 0, it is enough to show E HJ(Λ)2 → 0. Note that

EHJ(Λ)2 = E

∥∥∥∥∥ 1

J

J∑
j=1

(Λ + Σj)
−1Σj(yj − θj)

∥∥∥∥∥
2

=
1

J2
E

(
J∑
`=1

(Λ + Σ`)
−1Σ`(y` − θ`)

)′( J∑
j=1

(Λ + Σj)
−1Σj(yj − θj)

)

=
1

J2
E

(
J∑
j=1

(yj − θj)′Σj(Λ + Σj)
−2Σj(yj − θj)

)

≤ 1

J2

J∑
j=1

tr(Σj(Λ + Σj)
−2ΣjΣj)

≤ 1

J2

J∑
j=1

tr(Σj),

where the last inequality follows from von Neumann’s trace inequality and the fact
that σ1(Σj(Λ + Σj)

−2Σj) ≤ 1. Moreover, by Assumption 4.1, I have supj tr(Σj) ≤
T supj σ1(Σj) < ∞, which implies 1

J2

∑J
j=1 tr(Σj) → 0. This establishes that HJ(Λ)

converges to zero in L2, and thus in probability.
To show that this convergence is uniform over Λ ∈ S+

T , by a similar argument
as in the proof of Theorem 4.1, it suffices to show that H̃J := HJ ◦ h−1 satisfies a
Lipschitz condition, i.e.,

|H̃J(Λ̃)− H̃J(Λ̃†)| ≤ BH,J‖Λ̃− Λ̃†‖ (20)

for all Λ̃, Λ̃† ∈ L̃, where BH,J = Op(1). Define Ãj = Λ̃−1 +(Σj−σΣIT ) and Ã†j likewise
with Λ̃ replaced with Λ̃†. Observe that

|H̃J(Λ̃)− H̃J(Λ̃†)| =|‖ 1
J

∑J
j=1 Ã

−1
j Σj(yj − θj)‖ − ‖ 1

J

∑J
j=1 Ã

†−1
j Σj(yj − θj)‖|

≤‖ 1
J

∑J
j=1(Ã−1

j − Ã
†−1
j )Σj(yj − θj)‖

≤ 1
J

∑J
j=1 σ1(Ã−1

j − Ã
†−1
j )‖Σj(yj − θj)‖,

(21)

where the first inequality follows from the reverse triangle inequality and the second
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by the triangle inequality and the definition of the operator norm. Observe that

Ã−1
j − Ã

†−1
j =Ã†−1

j (Ã†j − Ãj)Ã−1
j

=Ã†−1
j (Λ̃†−1 − Λ̃−1)Ã−1

j

=Ã†−1
j Λ̃−1(Λ̃− Λ̃†)Λ̃†−1Ã−1

j ,

(22)

which implies

σ1(Ã−1
j − Ã

†−1
j ) ≤σ1(Ã†−1

j Λ̃−1)σ1(Λ̃− Λ̃†)σ1(Λ̃†−1Ã−1
j )

≤(supΛ̃∈L̃ σ1((Λ̃−1 + (Σj − σΣIT ))−1Λ̃−1)2)σ1(Λ̃− Λ̃†),
(23)

where the first inequality follows from (22) and the fact that the operator norm is
submultiplicative and the second inequality from the fact that σ1(C) = σ1(C ′) for any
matrix C. Furthermore, I have shown in (17) that σ1((Λ̃−1 + (Σj − σΣIT ))−1Λ̃−1)2 is
bounded above by 1. Hence, I obtain

σ1(Ã−1
j − Ã

†−1
j ) ≤ σ1(Λ̃− Λ̃†) ≤ ‖Λ̃− Λ̃†‖,

where the last inequality follows from the fact that the operator norm of a matrix is
less than or equal to its Frobenius norm.

Plugging this bound into (21), it follows that

|H̃J(Λ̃)− H̃J(Λ̃†)| ≤

(
1

J

J∑
j=1

‖Σj(yj − θj)‖

)
‖Λ̃− Λ̃†‖.

Therefore, it remains to show 1
J

∑J
j=1‖Σj(yj−θj)‖ = Op(1) to establish (20). Observe

that

1

J

J∑
j=1

‖Σj(yj − θj)‖

=
1

J

J∑
j=1

(‖Σj(yj − θj)‖ − E‖Σj(yj − θj)‖) +
1

J

J∑
j=1

E‖Σj(yj − θj)‖.

Since supj var(‖Σj(yj − θj)‖) ≤ supj E‖Σj(yj − θj)‖2 = supj tr(Σj)
3 < ∞ the first

term converges to zero in probability by an application of Chebyshev’s inequality.
Also, because supj E‖Σj(yj − θj)|≤ supj σ1(Σj)(E‖yj‖ + ‖θj‖) < ∞ by Assumption
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4.1, the second term is O(1). This establishes 1
J

∑J
j=1‖Σj(yj−θj)‖ = Op(1), and thus

supΛHJ(Λ)
p→ 0.

Now, to show that supΛHJ(Λ) converges to zero in L2, it is enough to show that
{supΛHJ(Λ)2}J≤1 is uniformly integrable. A sufficient condition for this to hold is

supJ E supΛHJ(Λ)2+δ <∞,

for some δ > 0. First, I derive an upper bound of HJ(Λ),

HJ(Λ) =

∥∥∥∥∥ 1

J

J∑
j=1

(Λ + Σj)
−1Σj(yj − θj)

∥∥∥∥∥
≤ 1

J

J∑
j=1

σ1((Λ + Σj)
−1Σj))‖yj − θj‖

≤ 1

J

J∑
j=1

‖yj − θj‖,

where the first inequality follows from the triangle inequality and the definition of the
operator norm, and the second inequality follows because

σ1((Λ + Σj)
−1Σj)

2 = σ1(Σj(Λ + Σj)
−2Σj) = σ1(IT + Σ

−1/2
j ΛΣ

−1/2
j ) ≤ 1.

Therefore, I have

sup
Λ
HJ(Λ)2+δ ≤

(
1

J

J∑
j=1

‖yj − θj‖

)2+δ

≤ 1

J

J∑
j=1

‖yj − θj‖2+δ

≤ 1

J

J∑
j=1

21+δ(‖yj‖2+δ + ‖θj‖2+δ),

(24)

where the second inequality follows from Jensen’s inequality, and the last inequality
follows from the triangle inequality and the fact that (a+ b)p ≤ 2p−1(ap + bp) for any
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a, b ≥ 0 and p ≥ 1. Taking expectations shows that, for any δ ∈ [0, 2],

lim supJ E supΛHJ(Λ)2+δ <∞,

and thus supJ E supΛHJ(Λ)2+δ <∞. This concludes the proof for supΛHJ(Λ)
L2

→ 0.
It remains to show lim supJ→∞E supµ‖µ‖2 <∞. I have

sup
µ
‖µ‖2 = sup

µ

T∑
t=1

µ2
t =

T∑
t=1

q2
1−τ ({|yjt|}Jj=1),

and thus it suffices to show that lim supJ→∞Eq
2
Jt <∞ for t = 1, . . . , T . Observe that

q2
1−τ ({|yjt|}Jj=1) = q1−τ ({y2

jt}Jj=1) ≤ q1−τ ({2θ2
jt + 2ε2

jt}Jj=1)

≤ 2q1−τ/2({θ2
jt}Jj=1) + 2q1−τ/2({ε2

jt}Jj=1),

where the last inequality follows from a property of a quantile that the 1− τ quantile
of the sum of two random variables are bounded by the sum of the 1− τ/2 quantiles
of those two random variables. It follows that q1−τ/2({θ2

jt}Jj=1) < supj θ
2
jt < ∞, and

thus it suffices to show that lim supJ→∞Eq1−τ/2({ε2
jt}Jj=1) <∞. I have

q1−τ/2({ε2
jt}Jj=1) = q1−τ/2({σ2

jtη
2
jt}Jj=1) ≤ q1−τ/2({σ2

tη
2
jt}Jj=1) = σ2

t q1−τ/2({η2
jt}Jj=1),

where the first equality holds by Assumption 4.2 and the inequality holds because
replacing σ2

jt by σ2
t makes all the sample points larger, and thus the sample quantile

larger. Define τ = 2(1 − dJ(1− τ/2)e/J), which is the largest τ ≤ τ such that
J(1−τ/2) is an integer. By a result on the bias of sample quantiles given by Okolewski
and Rychlik (2001), it follows that

sup
J

E q1−τ/2({η2
jt}Jj=1) ≤

(
var(η2

jt)

(1− τ/2)τ/2

)1/2

+ F−1
t (1− τ/2) <∞,

and q1−τ/2({η2
jt}Jj=1) ≤ q1−τ/2({η2

jt}Jj=1) because τ ≤ τ . This establishes thatE supµ‖µ‖2 <

∞, which concludes the proof.
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A.3 Proof of Theorem 4.3

By essentially the same calculations given in (19), it is enough to show

lim sup
J→∞

E sup
γ∈ΓJ

‖γ‖2 <∞, and

lim
J→∞

E sup
Λ

∥∥∥∥∥ 1

J

J∑
j=1

Z ′j(Λ + Σj)
−1Σj(yj − θj)

∥∥∥∥∥
2

= 0,

The first line is equivalent to showing

lim sup
J→∞

E(
∑J

j=1 y
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jyj) <∞. (25)

Simple calculations show that

E(
∑J

j=1 y
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jyj)

=E(
∑J

j=1(ε′j + θ′j)Zj)(
∑J

j=1 Z
′
jZj)

−2(
∑J

j=1 Z
′
j(θj + εj))

=(
∑J

j=1 θ
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jθj) + E(

∑J
j=1 ε

′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jεj),

where the last equality follows because the “cross terms” are zero due to the conditional
mean independence assumption. I show that the first and second term of the last line
is O(1) and o(1), respectively, which in turn will imply (25). Note that

‖(
∑J

j=1 θ
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jθj)‖

≤σ1(( 1
J

∑J
j=1 Z

′
jZj)

−2)‖ 1
J

∑J
j=1 Z

′
jθj‖2

≤σ1(( 1
J

∑J
j=1 Z

′
jZj)

−2)( 1
J

∑J
j=1 σ1(Zj)‖θj‖)2,

with σ1(( 1
J

∑J
j=1 Z

′
jZj)

−2) → σ1((EZ ′jZj)
−2) and lim supJ→∞

1
J

∑J
j=1 σ1(Zj)‖θj‖ <

∞. This shows that lim supJ→∞(
∑J

j=1 θ
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jθj) <∞.

It remains to show E(
∑J

j=1 ε
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jεj)→ 0. Because

(
∑J

j=1 ε
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jεj)

= tr((
∑J

j=1 Z
′
jZj)

−2(
∑J

j=1 Z
′
jεj)(

∑J
j=1 ε

′
jZj))

= tr((
∑J

j=1 Z
′
jZj)

−2(
∑J

j=1

∑J
`=1 Z

′
jεjε

′
`Z`)),
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it follows that

E(
∑J

j=1 ε
′
jZj)(

∑J
j=1 Z

′
jZj)

−2(
∑J

j=1 Z
′
jεj)

= tr((
∑J

j=1 Z
′
jZj)

−2(
∑J

j=1

∑J
`=1 Z

′
j E[εjε

′
`]Z`))

= tr((
∑J

j=1 Z
′
jZj)

−2(
∑J

j=1 Z
′
jΣjZj))

= 1
J

tr(( 1
J

∑J
j=1 Z

′
jZj)

−2( 1
J

∑J
j=1 Z

′
jΣjZj))

Again, note that ( 1
J

∑J
j=1 Z

′
jZj)

−2 → (µZ,2)−2, and

lim sup
J→∞

∥∥∥∥∥ 1

J

J∑
j=1

Z ′jΣjZj

∥∥∥∥∥ ≤ lim sup
J→∞

1

J

J∑
j=1

σ1(Zj)
2σ1(Σj) <∞.

This shows that 1
J

tr(( 1
J

∑J
j=1 Z

′
jZj)

−2( 1
J

∑J
j=1 Z

′
jΣjZj)) → 0, which concludes the

proof for (25).
To show limJ→∞E supΛ‖ 1

J

∑J
j=1 Z

′
j(Λ+Σj)

−1Σj(yj−θj)‖2 = 0, I follow the lines of
argument given in the proof of Theorem 4.2 carefully. The main difference is that now
the summand is multiplied by Z ′j. WriteHZ,J(Λ) := ‖ 1

J

∑J
j=1 Z

′
j(Λ+Σj)

−1Σj(yj−θj)‖.
First, I show EHZ,J(Λ)2 → 0, which implies HZ,J(Λ)

p→ 0. Write σZ := supj σ1(Zj),
and note that supj σ1(ZjZ

′
j) = supj σ1(Z ′jZj) = σ2

Z . I have

EHZ,J(Λ)2 = E‖ 1
J

∑J
j=1 Z

′
j(Λ + Σj)

−1Σj(yj − θj)‖2

= 1
J2 E(

∑J
`=1 Z

′
`(Λ + Σ`)

−1Σ`(y` − θ`))′(
∑J

j=1 Z
′
j(Λ + Σj)

−1Σj(yj − θj))

= 1
J2 E(

∑J
j=1(yj − θj)′Σj(Λ + Σj)

−1ZjZ
′
j(Λ + Σj)

−1Σj(yj − θj))

≤ 1
J2

∑J
j=1 tr(Σj(Λ + Σj)

−1ZjZ
′
j(Λ + Σj)

−1ΣjΣj)

≤ 1
J2

∑J
j=1 σ1(Σj(Λ + Σj)

−1ZjZ
′
j(Λ + Σj)

−1Σj) tr(Σj)

≤ 1
J2

∑J
j=1 σ

2
Z tr(Σj),

where the second inequality follows from von Neumann’s trace inequality and the last
equality from the fact that the operator norm is submultiplicative and the bound
σ1(Σj(Λ + Σj)

−2Σj) ≤ 1. Since supj tr(Σj) ≤ T supj σ1(Σj) < ∞, I conclude that
1
J2

∑J
j=1 σ

2
Z tr(Σj) → 0. This establishes that HZ,J(Λ) converges to zero in L2, and

thus in probability.
To show that this convergence is uniform over Λ ∈ S+

T , by a similar argument as
in the proof of Theorem 4.1, it suffices to show that H̃Z,J := HZ,J ◦ h−1 satisfies a
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Lipschitz condition, i.e.,

|H̃Z,J(Λ̃)− H̃Z,J(Λ̃†)| ≤ BZ
H,J‖Λ̃− Λ̃†‖ (26)

for all Λ̃, Λ̃† ∈ L̃, where BZ
H,J = Op(1). Define Ãj = Λ̃−1 +(Σj−σΣIT ) and Ã†j likewise

with Λ̃ replaced with Λ̃†. Observe that

|H̃Z,J(Λ̃)− H̃Z,J(Λ̃†)|

=

∣∣∣∣∣
∥∥∥∥∥ 1

J

J∑
j=1

Z ′jÃ
−1
j Σj(yj − θj)

∥∥∥∥∥−
∥∥∥∥∥ 1

J

J∑
j=1

Z ′jÃ
†−1
j Σj(yj − θj)

∥∥∥∥∥
∣∣∣∣∣

≤

∥∥∥∥∥ 1

J

J∑
j=1

Z ′j(Ã
−1
j − Ã

†−1
j )Σj(yj − θj)

∥∥∥∥∥
≤ 1

J

J∑
j=1

σ1(Zj)σ1(Ã−1
j − Ã

†−1
j ) ‖Σj(yj − θj)‖ ,

(27)

where the first inequality follows from the reverse triangle inequality and the second
by the triangle inequality and the definition of the operator norm.

In the proof of Theorem 4.2, I showed that

σ1(Ã−1
j − Ã

†−1
j ) ≤ ‖Λ̃− Λ̃†‖.

Plugging this bound into (27), I obtain

|H̃Z,J(Λ̃)− H̃Z,J(Λ̃†)| ≤ ( 1
J

∑J
j=1 σ1(Zj)‖Σj(yj − θj)‖)‖Λ̃− Λ̃†‖.

Furthermore, I have

J∑
j=1

σ1(Zj)‖Σj(yj − θj)‖ ≤ σZ

J∑
j=1

‖Σj(yj − θj)‖,

and I have already shown 1
J

∑J
j=1‖Σj(yj − θj)‖ = Op(1) in the proof of Theorem 4.2.

This establishes (26), and thus supΛHZ,J(Λ)
p→ 0.

Now, to show that supΛHZ,J(Λ) converges to zero in L2, it is enough to show that
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{supΛHZ,J(Λ)2}J≤1 is uniformly integrable. A sufficient condition for this is

supJ E supΛHZ,J(Λ)2+δ <∞,

for some δ > 0. An upper bound of HZ,J(Λ) is given by

HZ,J(Λ) =

∥∥∥∥∥ 1

J

J∑
j=1

Z ′j(Λ + Σj)
−1Σj(yj − θj)

∥∥∥∥∥
≤ 1

J

J∑
j=1

σ1(Zj)σ1((Λ + Σj)
−1Σj))‖yj − θj‖

≤σZ
1

J

J∑
j=1

‖yj − θj‖,

where the first inequality follows from the triangle inequality and the definition of
the operator norm, and the second inequality follows because σ1((Λ + Σj)

−1Σj) ≤ 1.

Therefore, following (24), I have

sup
Λ
HZ,J(Λ)2+δ ≤ σ2+δ

Z

1

J

J∑
j=1

21+δ(‖yj‖2+δ + ‖θj‖2+δ),

Taking expectations, I obtain

lim supJ E supΛHJ(Λ)2+δ <∞,

for any δ ∈ [0, 2], and thus supJ E supΛHZ,J(Λ)2+δ < ∞. This concludes the proof

for supΛHZ,J(Λ)
L2

→ 0.

A.4 Proof of Theorem 5.1

I first give details on the derivation of the UPE. Note that

E(B(Λ,Σj,−T )′yj,−T − θjT )2

=E(B(Λ,Σj,−T )′yj,−T − yjT )2 + E(yjT − θjT )2

− 2E[(yjT −B(Λ,Σj,−T )′yj,−T )(yjT − θjT )].
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The cross term can be written as

E[(yjT −B(Λ,Σj,−T )′yj,−T )(yjT − θjT )]

=E[(yjT − θjT −B(Λ,Σj,−T )′(yj,−T − θj,−T ) + θjT −B(Λ,Σj,−T )′θj,−T )(yjT − θjT )]

=Σj,T −B(Λ,Σj,−T )′Σj,T,−T .

Hence, it follows that

E(B(Λ,Σj,−T )′yj,−T − θjT )2

=E(B(Λ,Σj,−T )′yj,−T − yjT )2 − ΣjT + 2B(Λ,Σj,−T )′Σj,T,−T ,

which shows the UPE is indeed unbiased.

Now, I prove Theorem 5.1. Consider the following bound,∣∣∣∣∣ 1J
J∑
j=1

(
(B(Λ,Σj,−T )′yj,−T − yjT )2 − Σj,T

)
− 1

J

J∑
j=1

(B(Λ,Σj,−1)′yj,−1 − θj,T+1)2

∣∣∣∣∣
≤

∣∣∣∣∣ 1J
J∑
j=1

(
(B(Λ,Σj,−T )′yj,−T − yjT )2 − Σj,T

)
− 1

J

J∑
j=1

(B(Λ,Σj,−T )′yj,−T − θj,T )2

∣∣∣∣∣
+

∣∣∣∣∣ 1J
J∑
j=1

(B(Λ,Σj,−T )′yj,−T − θj,T )2 − 1

J

J∑
j=1

(B(Λ,Σj,−1)′yj,−1 − θj,T+1)2

∣∣∣∣∣ , (28)

which is by the triangle inequality.
Further calculation gives

1

J

J∑
j=1

(B(Λ,Σj,−T )′yj,−T − θj,T )2

=
1

J

J∑
j=1

(B(Λ,Σj,−T )′yj,−T − yj,T + yjT − θj,T )2

=
1

J

J∑
j=1

((B(Λ,Σj,−T )′yj,−T − yj,T )2 + (yjT − θj,T )2)

− 2
1

J

J∑
j=1

(yj,T −B(Λ,Σj,−T )′yj,−T )(yjT − θj,T ).
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The cross term can be decomposed as

1

J

J∑
j=1

(yj,T −B(Λ,Σj,−T )′yj,−T )(yjT − θj,T )

=
1

J

J∑
j=1

(yjT − θjT −B(Λ,Σj,−T )′(yj,−T − θj,−T ) + θjT −B(Λ,Σj,−T )′θj,−T )(yjT − θjT )

=
1

J

J∑
j=1

(yjT − θjT )2 − 1

J

J∑
j=1

B(Λ,Σj,−T )′(yj,−T − θj,−T )(yjT − θjT )

+
1

J

J∑
j=1

(θjT −B(Λ,Σj,−T )′θj,−T )(yjT − θjT ).

Plugging this into the first term of right-hand side in (28), it follows that∣∣∣∣∣ 1J
J∑
j=1

(
(B(Λ,Σj,−T )′yj,−T − yjT )2 − Σj,T

)
− 1

J

J∑
j=1

(B(Λ,Σj,−T )′yj,−T − θj,T )2

∣∣∣∣∣
≤

∣∣∣∣∣ 1J
J∑
j=1

(
(yjT − θjT )2 − Σj,T

)∣∣∣∣∣
+

∣∣∣∣∣ 2J
J∑
j=1

B(Λ,Σj,−T )′((yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T )

∣∣∣∣∣
+

∣∣∣∣∣ 2J
J∑
j=1

θjT (yjT − θjT )

∣∣∣∣∣+

∣∣∣∣∣ 2J
J∑
j=1

B(Λ,Σj,−T )′θj,−T (yjT − θjT )

∣∣∣∣∣
:=(I)J + (II)J + (III)J + (IV)J .

The aim is to show that each of the four terms in the last line converges to 0

in L1, uniformly over Λ ∈ L. In fact, I show uniformity over (ΛT,−T ,Λ−T ) ∈ L :=

LT,−T × L−T , where

LT,−T = {ΛT,−T ∈ RT−1 : ‖ΛT,−T‖ ≤ KT,−T}, and

L−T = {Λ−T ∈ S+
T−1 : ‖Λ−T‖ ≤ K−T}.

Here, KT,−T and K−T are positive numbers large enough so that {ΛT,−T : Λ ∈ L} ⊂
LT,−T and {Λ−T : Λ ∈ L} ⊂ L−T , which exist due to the fact that L is bounded. Note
that Λ ∈ L implies (ΛT,−T ,ΛT ) ∈ L, and thus establishing convergence uniformly over
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the latter is sufficient. Note that

sup
(ΛT,−T ,ΛT )∈L

‖B(Λ,Σj,−T )‖ ≤ sup
(ΛT,−T ,ΛT )∈L

‖ΛT,−T‖σ1((Λ−T + Σj,−T )−1)

≤KT,−Tσ
−1
T−1(Σj,−T )

≤KT,−Tσ
−1
T (Σj),

(29)

where the last line follows because the relationship between eigenvalues of a matrix
and the eigenvalues of its principal submatrices (see, for example, Theorem 4.3.15 of
Horn and Johnson (1990)). In some of the derivations later on, it is useful to make
clear that B(Λ,Σj,−T ) depends on Λ only through (ΛT,−T ,Λ−T ). When this fact has
be highlighted, I write B(ΛT,−T ,Λ−T ,Σj,−T ) := B(Λ,Σj,−T ). Now, I condition all
random quantities on a sequence {((θ′j, θj,T+1)′,Σj)}∞j=1. Note that by Assumption
5.1, now I can assume that Assumption 4.1 holds.

To show that (I)J converges to zero in L2, and thus in L1, note that

E

∣∣∣∣∣ 1J
J∑
j=1

(
(yjT − θjT )2 − Σj,T

)∣∣∣∣∣
2

≤ 1

J2

J∑
j=1

8(E y4
jT + θ4

jT ).

The summand in the last line is uniformly bounded over j, which establishes the
convergence.

Similarly, (III)J
L2

→ 0 can be easily shown by noting that

E

∣∣∣∣∣ 2J
J∑
j=1

θjT (yjT − θjT )

∣∣∣∣∣
2

≤ 4

J2

J∑
j=1

θ2
jTΣjT ,

and the summand of the right-hand side is bounded uniformly over j.
To show that supL (II)J

L1

→ 0 and supL (IV)J
L1

→ 0, I again use a result by Andrews
(1992), which will establish convergence in probability, and then show a uniform
integrability condition to show that convergence holds in L1 as well. Here, I write
supL as a shorthand for sup(ΛT,−T ,Λ−T )∈L. I start with (II)J . For pointwise convergence
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(in L2), note that

E

∣∣∣∣∣ 2J
J∑
j=1

B(Λ,Σj,−T )′((yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T )

∣∣∣∣∣
2

=
4

J2

J∑
j=1

tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′ var((yj,−T − θj,−T )(yjT − θjT ))

≤ 4

J2

J∑
j=1

σ1(B(Λ,Σj,−T )B(Λ,Σj,−T )′) tr(var((yj,−T − θj,−T )(yjT − θjT )))

≤ 4

J2

J∑
j=1

K2
T,−Tσ

−2
T (Σj) tr(var((yj,−T − θj,−T )(yjT − θjT ))),

where the second inequality follows from von Neumann’s trace inequality and the fact
that σ1(xx′) = σ1(x′x) = ‖x‖2 for any x ∈ RT−1, and the last inequality from (29).
Moreover, I have

tr(var((yj,−T − θj,−T )(yjT − θjT )))

≤
T−1∑
t=1

E(yjt − θjt)2(yjT − θjT )2

≤
T−1∑
t=1

(E(yjt − θjt)4(yjT − θjT )4)1/2,

where the second inequality is by Cauchy-Schwarz. Note that the term in the last
line is bounded uniformly over j, which establishes (II)J

L2

→ 0. It remains to establish
a Lipschitz condition. Define

GJ(ΛT,−T ,Λ−T ) =
2

J

J∑
j=1

B(Λ,Σj,−T )′((yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T ).

I show that GJ(ΛT,−T ,Λ−T ) is Lipschitz in ΛT,−T and Λ−T , respectively, with Lip-
schitz constants bounded in probability that do not depend on the other parame-
ter held fixed, which will establish that GJ(ΛT,−T ,Λ−T ) is Lipschitz with respect to
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(ΛT,−T ,Λ−T ). Note that, for any ΛT,−T , Λ̃T,−T ∈ LT,−T ,

‖B(ΛT,−T ,Λ−T ,Σj,−T )−B(Λ̃T,−T ,Λ−T ,Σj,−T )‖

≤‖(ΛT,−T − Λ̃T,−T )′(Σj,−T + Λ−T )−1‖

≤‖ΛT,−T − Λ̃T,−T‖σ1((Σj,−T + Λ−T )−1)

≤σ−1
Σ ‖ΛT,−T − Λ̃T,−T‖.

(30)

Also, for any Λ−T , Λ̃−T ∈ L−T , O have

‖B(ΛT,−T ,Λ−T ,Σj,−T )−B(ΛT,−T , Λ̃−T ,Σj,−T )‖

≤‖Λ′T,−T ((Σj,−T + Λ−T )−1 − (Σj,−T + Λ̃−T )−1)‖

≤KT,−Tσ1((Σj,−T + Λ−T )−1 − (Σj,−T + Λ̃−T )−1)

To derive a bound for σ1((Σj,−T + Λ−T )−1 − (Σj,−T + Λ̃−T )−1), note that

(Σj,−T + Λ−T )−1 − (Σj,−T + Λ̃−T )−1

≤(Σj,−T + Λ̃−T )−1((Σj,−T + Λ̃−T )− (Σj,−T + Λ−T ))(Σj,−T + Λ−T )−1

=(Σj,−T + Λ̃−T )−1(Λ̃−T − Λ−T )(Σj,−T + Λ−T )−1.

This implies σ1((Σj,−T + Λ−T )−1 − (Σj,−T + Λ̃−T )−1) ≤ σ−2
Σ ‖Λ−T − Λ̃−T‖, which in

turn implies the following Lipschitz condition,

‖B(ΛT,−T ,Λ−T ,Σj,−T )−B(ΛT,−T , Λ̃−T ,Σj,−T )‖ ≤ σ−2
Σ ‖Λ−T − Λ̃−T‖. (31)

Now, combining (30) and (31), we have for any (ΛT,−T ,Λ−T ), (Λ̃T,−T , Λ̃−T ) ∈ L,

‖B(ΛT,−T ,Λ−T ,Σj,−T )−B(Λ̃T,−T , Λ̃−T ,Σj,−T )‖

≤‖B(ΛT,−T ,Λ−T ,Σj,−T )−B(Λ̃T,−T ,Λ−T ,Σj,−T )‖

+ ‖B(Λ̃T,−T ,Λ−T ,Σj,−T )−B(Λ̃T,−T , Λ̃−T ,Σj,−T )‖

≤σ−1
Σ ‖ΛT,−T − Λ̃T,−T‖+ σ−2

Σ ‖Λ−T − Λ̃−T‖

≤(σ−1
Σ ∨ σ

−2
Σ )(‖ΛT,−T − Λ̃T,−T‖+ ‖Λ−T − Λ̃−T‖).

(32)

Because ‖(ΛT,−T ,Λ−T )‖ := ‖ΛT,−T‖+ ‖Λ−T‖ defines a norm on the product space L,
this shows that B(·, ·,Σj,−T ) is Lipshitz on L.
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It follows that

|GJ(ΛT,−T ,Λ−T )−GJ(Λ̃T,−T , Λ̃−T )|

≤ 2

J

J∑
j=1

|(B(Λ,Σj,−T )−B(Λ̃,Σj,−T ))′((yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T )|

≤ 2

J

J∑
j=1

‖B(Λ,Σj,−T )−B(Λ̃,Σj,−T )‖‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T )‖

≤((σ−1
Σ ∨ σ

−2
Σ )

2

J

J∑
j=1

‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T‖)‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖.

Hence, now it suffices to show

1

J

J∑
j=1

‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T‖ = Op(1). (33)

A bound for the left-hand side is given by

1

J

J∑
j=1

‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T‖

≤ 1

J

J∑
j=1

‖(yj,−T − θj,−T )(yjT − θjT )‖+ 1

J

J∑
j=1

‖Σj,T,−T‖

=
1

J

J∑
j=1

(‖(yj,−T − θj,−T )(yjT − θjT )‖ − E‖(yj,−T − θj,−T )(yjT − θjT )‖)

+
1

J

J∑
j=1

(E‖(yj,−T − θj,−T )(yjT − θjT )‖+ ‖Σj,T,−T‖)

=(A)J + (B)J .

I show that (A)J = op(1) and (B)J = O(1), from which (33) will follow.
To show (A)J

p→ 0, it suffices to show that the variance of the summand is bounded
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over j, since then it converges to zero in L2. Observe that

var(‖(yj,−T − θj,−T )(yjT − θjT )‖)

≤E‖(yj,−T − θj,−T )(yjT − θjT )‖2

≤4
T−1∑
t=1

E(|yjT |2 + |θjT |2)(|yj,t|2 + |θj,t|2)

≤4
T−1∑
t=1

((E|yjT |4 E|yj,t|4)1/2 + |θjT |2 E|yj,t|2 + |θj,t|2 E|yjT |2 + |θjT |2|θj,t|2),

(34)

where the last inequality follows by Cauchy-Schwarz. The expression in the last
line is bounded uniformly over j, and thus the variance term is as well. Because
E‖(yj,−T − θj,−T )(yjT − θjT )‖ ≤ (E‖(yj,−T − θj,−T )(yjT − θjT )‖2)1/2 by Jensen’s in-
equality, this also establishes lim supJ→∞ (B)J < ∞. This concludes the proof for
supL|GJ(ΛT,−T ,Λ−T )| p→ 0.

Now, I show that the convergence is in fact in L1 by establishing uniform integra-
bility of supL|GJ(ΛT,−T ,Λ−T )|. To this end, I verify a sufficient condition,

sup
j

E

(
sup
L
|GJ(ΛT,−T ,Λ−T )|

)2

<∞. (35)

First, I bound |GJ(ΛT,−T ,Λ−T )|. Note that

|GJ(ΛT,−T ,Λ−T )|

≤ 2

J

J∑
j=1

‖B(Λ,Σj,−T )‖‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T )‖

≤KT,−Tσ
−1
M

2

J

J∑
j=1

‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T )‖,

where the first inequality follows from the triangle inequality and Cauchy-Schwarz
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and the second inequality by (29). Hence, it follows that

E sup
L
|GJ(ΛT,−T ,Λ−T )|2

≤K2
T,−Tσ

−2
M E

(
2

J

J∑
j=1

‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T‖

)2

≤K2
T,−Tσ

−2
M

4

J

J∑
j=1

E‖(yj,−T − θj,−T )(yjT − θjT )− Σj,T,−T‖2

≤K2
T,−Tσ

−2
M

8

J

J∑
j=1

(E‖(yj,−T − θj,−T )(yjT − θjT )‖2 + ‖Σj,T,−T‖2),

where the second inequality follows from Cauchy-Schwarz. Since I have shown that
the summand in the last line is bounded over j in (34), we have (35). We conclude
that supL|GJ(ΛT,−T ,Λ−T )| L

1

→ 0.

I follow these same steps for (IV)J . I define

HJ(ΛT,−T ,Λ−T ,Σj,−T ) :=
2

J

J∑
j=1

B(Λ,Σj,−T )′θj,−T (yjT − θjT ).

For pointwise convergence, note that

var(B(Λ,Σj,−T )′θj,−TyjT ) =(B(Λ,Σj,−T )′θj,−T )2ΣjT

≤‖B(Λ,Σj,−T )‖2‖θj,−T‖2ΣjT

≤K2
T,−Tσ

−2
M ‖θj,−T‖

2ΣjT ,

where the first inequality follows by Cauchy-Schwarz and the second inequality by
(29). The expression in the last line is bounded over j, and thusHJ(ΛT,−T ,Λ−T ,Σj,−T )

converges to zero in L2.
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Now, I show that HJ(ΛT,−T ,Λ−T ,Σj,−T ) satisfies a Lipschitz condition. I have

|HJ(ΛT,−T ,Λ−T )−HJ(Λ̃T,−T , Λ̃−T )|

≤ 2

J

J∑
j=1

|(B(Λ,Σj,−T )−B(Λ̃,Σj,−T ))′θj,−T (yj,T − θj,T )|

≤ 2

J

J∑
j=1

‖B(Λ,Σj,−T )−B(Λ̃,Σj,−T )‖‖θj,−T‖|yjT − θjT |

≤((σ−1
Σ ∨ σ

−2
Σ )

2

J

J∑
j=1

‖θj,−T‖|yjT − θjT |,

where the second inequality is by Cauchy-Schwarz and the third inequality follows
from (32). The fact that 2

J

∑J
j=1‖θj,−T‖|yjT − θjT | = Op(1) follows from similar, but

simpler, steps we have taken to show (33). This implies supL|HJ(ΛT,−T ,Λ−T )| p→
0. Again, following the same arguments we have used to show (35), we can easily
show that supL|HJ(ΛT,−T ,Λ−T )| is uniformly integrable, from which it follows that

supL|HJ(ΛT,−T ,Λ−T )| L
1

→ 0. This concludes the proof for the first term of the right-
hand side of (28) converging to zero in L1.

For the second term of the right-hand side of (28), note that

(B(Λ,Σj,−T )′yj,−T − θj,T )2

=(B(Λ,Σj,−T )′yj,−T −B(Λ,Σj,−T )′θj,−T +B(Λ,Σj,−T )′θj,−T − θj,T )2

=(B(Λ,Σj,−T )′yj,−T −B(Λ,Σj,−T )′θj,−T )2 + (B(Λ,Σj,−T )′θj,−T − θj,T )2

+ 2(B(Λ,Σj,−T )′yj,−T −B(Λ,Σj,−T )′θj,−T )(B(Λ,Σj,−T )′θj,−T − θj,T ).

Furthermore, I have

E(B(Λ,Σj,−T )′yj,−T −B(Λ,Σj,−T )′θj,−T )2

= var(B(Λ,Σj,−T )′yj,−T )

=B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T ).
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Hence, it follows that∣∣∣ 1
J

∑J
j=1(B(Λ,Σj,−T )′yj,−T − θj,T )2 − 1

J

∑J
j=1(B(Λ,Σj,−1)′yj,−1 − θj,T+1)2

∣∣∣
≤
∣∣∣ 1
J

∑J
j=1 ((B(Λ,Σj,−T )′(yj,−T − θj,−T ))2 −B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T ))

∣∣∣
+ 2

∣∣∣ 1
J

∑J
j=1(B(Λ,Σj,−T )′(yj,−T − θj,−T ))(B(Λ,Σj,−T )′θj,−T − θj,T )

∣∣∣
+
∣∣∣ 1
J

∑J
j=1 ((B(Λ,Σj,−1)′(yj,−1 − θj,−1))2 −B(Λ,Σj,−1)′Σj,−1B(Λ,Σj,−1))

∣∣∣
+ 2

∣∣∣ 1
J

∑J
j=1(B(Λ,Σj,−1)′(yj,−1 − θj,−1))(B(Λ,Σj,−1)′θj,−1 − θj,−1)

∣∣∣
+
∣∣∣ 1
J

∑J
j=1 (B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T )−B(Λ,Σj,−1)′Σj,−1B(Λ,Σj,−1))

∣∣∣
+
∣∣∣ 1
J

∑J
j=1 ((B(Λ,Σj,−T )′θj,−T − θj,T )2 − (B(Λ,Σj,−1)′θj,−1 − θj,T+1)2)

∣∣∣
=(I)J + (II)J + (III)J + (IV)J + (V)J + (VI)J .

I show that each of the six terms converges to zero uniformly over L in the L1

sense. The proof for the first four terms are extremely similar. Hence, I provide a
proof for only (I)J, and a sketch for the other three terms. Note that the terms (V)J
and (VI)J are nonrandom.

Note that the summand in (I)J can be written as

tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′((yj,−T − θj,−T )(yj,−T − θj,−T )′ − Σj,−T )),

which has mean zero. Hence, if the expectation of the square of this term is bounded
over j, then (I)J

L2

→ 0. We have

|tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′((yj,−T − θj,−T )(yj,−T − θj,−T )′ − Σj,−T ))|

≤|tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′(yj,−T − θj,−T )(yj,−T − θj,−T )′)|

+ |tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′Σj,−T )|

≤‖B(Λ,Σj,−T )‖2(‖yj,−T − θj,−T‖2 + tr(Σj,−T )),

where the last inequality follows from von Neumann’s trace inequality and the equiv-
alence between the largest singular value of the outer product of a vector and its
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squared L2 norm. It follows that

E tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′((yj,−T − θj,−T )(yj,−T − θj,−T )′ − Σj,−T ))2

≤E ‖B(Λ,Σj,−T )‖4(‖yj,−T − θj,−T‖2 + tr(Σj,−T ))2

≤E K4
T,−Tσ

−4
Σ (8‖yj,−T‖4 + 8‖θj,−T‖4 + tr(Σj,−T )2 + 4(‖yj,−T‖2 + ‖θj,−T‖2) tr(Σj,−T )),

where the term in the last line is bounded over j. This shows that (I)J
L2

→ 0.
Now, to obtain a uniform convergence result, write

GI,J(ΛT,−T ,Λ−T )

=
1

J

J∑
j=1

tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′((yj,−T − θj,−T )(yj,−T − θj,−T )′ − Σj,−T )).

For any two x, x̃ ∈ RT−1, we have

‖xx′ − x̃x̃′‖ ≤ ‖x− x̃‖(‖x‖+ ‖x̃‖),

where the inequality holds by adding and subtracting xx̃′, applying the triangle in-
equality, and then Cauchy-Schwarz. This, combined with (29) and (32), gives

‖B(Λ,Σj,−T )B(Λ,Σj,−T )′ −B(Λ̃,Σj,−T )B(Λ̃,Σj,−T )′‖

≤2σ−1
Σ KT,−T‖B(Λ,Σj,−T )−B(Λ̃,Σj,−T )‖

≤2σ−1
Σ (σ−1

Σ ∨ σ
−2
Σ )KT,−T‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖,

(36)

which shows that B(Λ,Σj,−T )B(Λ,Σj,−T ) is Lipschitz. This will translate into a
Lipschitz condition on GI,J(ΛT,−T ,Λ−T ). For simplicity, I write

B2(Λ,Σj,−T ) = B(Λ,Σj,−T )B(Λ,Σj,−T )′.
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Observe that

|GI,J(ΛT,−T ,Λ−T )−GI,J(Λ̃T,−T , Λ̃−T )|

≤

∣∣∣∣∣ 1J
J∑
j=1

tr((B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T ))′(yj,−T − θj,−T )(yj,−T − θj,−T )′)

∣∣∣∣∣
+

∣∣∣∣∣ 1J
J∑
j=1

tr((B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T ))′Σj,−T )

∣∣∣∣∣
≤ 1

J

J∑
j=1

σ1(B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T )) tr((yj,−T − θj,−T )(yj,−T − θj,−T )′)

+
1

J

J∑
j=1

σ1(B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T )) tr(Σj,−T ),

where the second inequality follows from the triangle inequality, von Neumann’s trace
inequality, and the fact that the sum of the eigenvalues of asymmetric matrix equals
its trace. Now, using the fact that the operator norm is bounded by the Frobenius
norm, we obtain

|GI,J(ΛT,−T ,Λ−T )−GI,J(Λ̃T,−T , Λ̃−T )|

=2σ−1
Σ (σ−1

Σ ∨ σ
−2
Σ )KT,−TBJ‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖,

where BJ = 1
J

∑J
j=1 tr((yj,−T − θj,−T )(yj,−T − θj,−T )′ + Σj,−T ), which is Op(1) by the

law of large numbers. This establishes that supL|GI,J(ΛT,−T ,Λ−T )| p→ 0. Again, the
mode of convergence can be strengthened to L1 by verifying a uniform integrability
conditions. To this end, note that the summand in the definition of GI,J(ΛT,−T ,Λ−T )

can be bounded by

|tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′((yj,−T − θj,−T )(yj,−T − θj,−T )′ − Σj,−T ))|

≤K2
T,−Tσ

−2
Σ tr((yj,−T − θj,−T )(yj,−T − θj,−T )′ + Σj,−T )),

which follows by the same steps used when showing the Lipschitz condition. Since
the expectation of the square of the right-hand side is bounded uniformly over j, it
follows that supj E supL|GI,J(ΛT,−T ,Λ−T )|2 < ∞. This concludes the proof for (I)J ,
and the exact same steps with “−T replaced with −1” also shows that (III)J converges
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to zero uniformly over L in L1.
For (II)J , note that∣∣∣∣∣ 1J

J∑
j=1

(B(Λ,Σj,−T )′(yj,−T − θj,−T ))(B(Λ,Σj,−T )′θj,−T − θj,T )

∣∣∣∣∣
≤

∣∣∣∣∣ 1J
J∑
j=1

θ′j,−TB(Λ,Σj,−T )B(Λ,Σj,−T )′(yj,−T − θj,−T )

∣∣∣∣∣
+

∣∣∣∣∣ 1J
J∑
j=1

θj,TB(Λ,Σj,−T )′(yj,−T − θj,−T )

∣∣∣∣∣ .
Note that the summand of the first term on the right-hand side can be written as

tr(B(Λ,Σj,−T )B(Λ,Σj,−T )′(yj,−T − θj,−T )θ′j,−T ),

which is very similar to the summand of (I)J . The same steps used there go through
without any added difficulty. The second term is even simpler, and extremely similar
to (IV)J above in the decomposition of the first term on the right-hand side of (28).
The same lines of argument used to establish convergence of such term can be used
here to show the desired convergence result. Note that none of the convergence results
depend on the choice of sequence {((θ′j, θj,T+1)′,Σj)}∞j=1 under Assumption 5.1.

Now, it remains to show that (V)J and (VI)J converges to zero uniformly over
L, for almost all sequences {((θ′j, θj,T+1)′,Σj)}∞j=1. Here, it is convenient to treat
{((θ′j, θj,T+1)′,Σj)}∞j=1. I denote by Ef the expectation with respect to the random
sequence {((θ′j, θj,T+1)′,Σj)}∞j=1. All almost sure assertions in the remainder of the
proof is with respect to the randomness of {((θ′j, θj,T+1)′,Σj)}∞j=1. It follows that∣∣∣∣∣ 1J

J∑
j=1

(B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T )−B(Λ,Σj,−1)′Σj,−1B(Λ,Σj,−1))

∣∣∣∣∣
≤

∣∣∣∣∣ 1J
J∑
j=1

(B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T )− Ef B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T ))

∣∣∣∣∣
+

∣∣∣∣∣ 1J
J∑
j=1

(B(Λ,Σj,−1)′Σj,−1B(Λ,Σj,−1)− Ef B(Λ,Σj,−1)′Σj,−1B(Λ,Σj,−1))

∣∣∣∣∣ ,
where in the inequality I use Assumption 5.2 and use the fact that the expectations
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are equal. I show that the first term on the right-hand side converges to 0 almost
surely, uniformly over L. The same result can be shown for the second term using
the exact same argument. Define

GV,J(ΛT,−T ,Λ−T )

=
1

J

J∑
j=1

(B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T )− Ef B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T )) .

Note that since Ef σ1(Σj) exists, we have

Ef B(Λ,Σj,−T )′Σj,−TB(Λ,Σj,−T ) ≤ K−2
T,−Tσ

−2
Σ Ef σ1(Σj) <∞.

Hence, by the strong law of large numbers, we have GV,J(ΛT,−T ,Λ−T ) → 0 almost
surely. For uniformity over L, again I verify a Lipschitz condition forGV,J(ΛT,−T ,Λ−T ).
We have ∣∣∣GV,J(ΛT,−T ,Λ−T )−GV,J(Λ̃T,−T , Λ̃−T )

∣∣∣
≤ 1

J

J∑
j=1

|tr((B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T ))Σj,−T )|

+
1

J

J∑
j=1

Ef |tr((B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T ))Σj,−T )|

≤2σ−1
Σ (σ−1

Σ ∨ σ
−2
Σ )KT,−TBJ‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖

where the first inequality follows from multiple applications of the triangle inequality,
and the second inequality follows with BJ = 1

J

∑J
j=1(tr(Σj,−T ) + E tr(Σj,−T )) from

von Neumann’s trace inequality and (36). Let a.s.→ denote almost sure convergence
with respect to the density f(θ′,θT+1)′,M . By the strong law of large numbers, it follows
that BJ

a.s.→ 2Ef tr(Σj,−t). Hence, by Lemma 1 of Andrews (1992), I conclude that
supL|GV,J(ΛT,−T ,Λ−T )| a.s.→ 0.

80



For (VI)J, the triangle inequality gives∣∣∣∣∣ 1J
J∑
j=1

(
(B(Λ,Σj,−T )′θj,−T − θj,T )2 − (B(Λ,Σj,−1)′θj,−1 − θj,T+1)2

)∣∣∣∣∣
≤

∣∣∣∣∣ 1J
J∑
j=1

(
(B(Λ,Σj,−T )′θj,−T − θj,T )2 − Ef (B(Λ,Σj,−T )′θj,−T − θj,T )2

)∣∣∣∣∣
+

∣∣∣∣∣ 1J
J∑
j=1

(
(B(Λ,Σj,−1)′θj,−1 − θj,T+1)2 − Ef (B(Λ,Σj,−1)′θj,−1 − θj,T+1)2

)∣∣∣∣∣ .
Again, I show that the desired convergence result only for the first term since the
result for the second term will follow from the exact same steps. Define

GVI,J(ΛT,−T ,Λ−T )

=
1

J

J∑
j=1

(
(B(Λ,Σj,−T )′θj,−T − θj,T )2 − Ef (B(Λ,Σj,−T )′θj,−T − θj,T )2

)
.

To show GVI,J(ΛT,−T ,Λ−T )
a.s.→ 0, note that

Ef (B(Λ,Σj,−T )′θj,−T − θj,T )2

≤2Ef tr(B2(Λ,Σj,−T )θj,−T θ
′
j,−T ) + Ef θ

2
jT

≤2K2
T,−Tσ

−2
Σ

∑T−1
t=1 Ef θ

2
jt + Ef θ

2
jT <∞,

where the second inequality follows because

tr(B2(Λ,Σj,−T )θj,−T θ
′
j,−T ) ≤ σ1(B2(Λ,Σj,−T )) tr(θj,−T θ

′
j,−T )

due to von Neumann’s trace inequality. Hence, by the strong law of large numbers,
we have GVI,J(ΛT,−T ,Λ−T )

a.s.→ 0.
Once again, I verify a Lipschitz condition to show that this convergence is in fact

uniform over L. Note that

(B(Λ,Σj,−T )′θj,−T − θj,T )2 − (B(Λ̃,Σj,−T )′θj,−T − θj,T )2

= tr((B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T ))θj,−T θ
′
j,−T )

− 2(B(Λ,Σj,−T )−B(Λ,Σj,−T ))′θj,−T θjT ,
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and thus, by (32) and (36),

|(B(Λ,Σj,−T )′θj,−T − θj,T )2 − (B(Λ̃,Σj,−T )′θj,−T − θj,T )2|

=|tr((B2(Λ,Σj,−T )−B2(Λ̃,Σj,−T ))θj,−T θ
′
j,−T )|

+ 2|(B(Λ,Σj,−T )−B(Λ,Σj,−T ))′θj,−T θjT |

≤2σ−1
Σ (σ−1

Σ ∨ σ
−2
Σ )KT,−T‖θj,−T‖2‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖

+ 2(σ−1
Σ ∨ σ

−2
Σ )‖θj,−T θjT‖‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖

:=Bj‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖

Likewise, we have

|Ef (B(Λ,Σj,−T )′θj,−T − θj,T )2 − Ef (B(Λ̃,Σj,−T )′θj,−T − θj,T )2|

≤2σ−1
Σ (σ−1

Σ ∨ σ
−2
Σ )KT,−T Ef‖θj,−T‖2‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖

+ 2(σ−1
Σ ∨ σ

−2
Σ )‖Ef θj,−T θjT‖‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖

:=BEf
‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖.

Combining the two inequalities, we have

|GVI,J(ΛT,−T ,Λ−T )−GVI,J(Λ̃T,−T , Λ̃−T )|

≤

(
1

J

J∑
j=1

Bj +BEf

)
‖(ΛT,−T ,Λ−T )− (Λ̃T,−T , Λ̃−T )‖

Hence, it suffices to show that 1
J

∑J
j=1 Bj

a.s.→ B for some fixed B. By the strong law
of large numbers, we have

1

J

J∑
j=1

‖θj,−T‖2 a.s.→ E‖θj,−T‖2 <∞

1

J

J∑
j=1

‖θj,−T θjT‖
a.s.→ E‖θj,−T θjT‖ ≤ (E θ2

j,T E‖θj,−T‖2)
1
2 <∞,

which establishes that 1
J

∑J
j=1Bj indeed converges almost surely to a finite value,

which concludes the proof.
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Appendix B Unbalanced panels

In practice, it is rarely the case that the empirical researcher has a balanced panel.
This corresponds to the case where for each j, one observes only a subvector of yj.
Note that the full vector, yj, is now in some sense hypothetical, but it is convenient
to consider that one observes a subvector of this full vector. I show that the URE
approach remains valid in the case of unbalanced panels, with minor adjustments.

Let tj1 < · · · < tjoj denote the time periods t for which observations for j exist,
where 1 ≤ oj ≤ T . Let Oj denote the oj × T matrix that picks out only the observed
periods, Oj = (etj1

, . . . , etjoj
)′ with e` ∈ RT denoting the `th standard basis vector. I

define the subvector or submatrix corresponding to the observed periods of yj, θj, Σj,
µ and Λ as yoj = Ojyj, θoj = Ojθj, Σo

j = OjΣjO
′
J , Λo

j = OjΛO
′
j and µoj = Ojµ. Again,

consider the second level model θj
i.i.d.∼ N(µ,Λ).

The aim is to estimate θo := (θo1
′, . . . , θoJ

′)′, and thus a natural class of estimators
I consider is given by the posterior mean

θ̂oj (µ,Λ) = E[θoj |yoj ] = Σo
j(Λ

o
j + Σo

j)
−1µoj + Λo

j(Λ
o
j + Σo

j)
−1yoj .

The loss function is modified so that it takes into account the different number of
observations for each j:

`o(θ̂o(µ,Λ), θo) :=
1

J

J∑
j=1

1

oj
‖θ̂oj (µ,Λ)− θoj‖2,

where I write the summand as `oj(θ̂oj (µ,Λ), θoj ). Note that in the balanced case of
oj = T for all j = 1, . . . , J , this coincides with the loss function we have been using
but scaled by 1/T . The scaling by 1/oj ensures that each (j, t) component is weighted
equally across all j and t.

An unbiased risk estimate of θ̂oj (µ,Σ) is given byUREo(µ,Λ) = 1
J

∑J
j=1 UREo

j(µ,Λ),

where

UREo
j(µ,Λ)

=
1

oj

(
tr(Σo

j)− 2 tr((Λo
j + Σo

j)
−1Σo

j
2) + (yoj − µoj)′[(Λo

j + Σo
j)
−1Σo

j
2(Λo

j + Σo
j)
−1](yoj − µo)

)
.

Theorem B.1 (Uniform convergence of UREo(µ,Λ)). Suppose Assumptions 4.1 and

83



4.2 hold. Then,

sup
(µ,Λ)∈MJ×S+T

|UREo(µ,Λ)− `o(θ̂o(µ,Λ), θo)| L
1

→ 0. (37)

As a consequence, under the same assumptions we required for the balanced the
case, the URE estimator obtains the oracle risk in the unbalanced case as well.

Proof. The difference between the risk estimate and the loss function (for j) is

|UREo(µ,Λ)− `o(θ̂o(µ,Λ), θo)|

=

∣∣∣∣∣ 1J
J∑
j=1

1

oj

(
yoj
′yoj − θoj ′θoj + tr(Σo

j)
)∣∣∣∣∣+

∣∣∣∣∣ 1J
J∑
j=1

2

oj
tr(Λo

j(Λ
o
j + Σo

j)
−1(yojy

o
j
′ − θojyoj ′ − Σo

j))

∣∣∣∣∣
+

∣∣∣∣∣ 1J
J∑
j=1

2

oj
µoj
′(Λo

j + Σo
j)
−1Σo

j(y
o
j − θoj )

∣∣∣∣∣
=(I)J + (II)J + (III)J ,

which follows from the same steps as in (12) and the triangle inequality. Hence it
suffices to show that each of the three terms converges to zero in L1, uniformly over
(µ,Λ) ∈MJ × S+

T .
The proof is a minor modification of the proofs for Theorems 4.1 and 4.3, and

thus I only point out the modifications that must be made. The convergence of the
first term can be shown, by noting that

E

(
1

oj

(
yoj
′yoj − θoj ′θoj + tr(Σo

j)
))2

≤ E
(
yoj
′yoj − θoj ′θoj + tr(Σo

j)
)2
,

and the right-hand side is bounded uniformly over j for the same reason that this
term without the o superscripts is bounded.

For (II)J , the main step is to show that the derivative of

tr(Σo
j(Λ

o
j + Σo

j)
−1(yojy

o
j
′ − θojyoj ′ − Σo

j))

with respect to Λ̃ = (σΣIT+Λ)−1 is bounded uniformly over j. Under such reparametriza-
tion, we have Λo

j = OjΛ̃O
′
j − σΣIoj . Define Λ̃o

j = OjL̃O
′
j. From similar calculations in
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the proof of Theorem 4.1 and the chain rule for matrix derivatives, I obtain

∂

∂Λ̃
tr(Σo

j(Λ
o
j + Σo

j)
−1(yojy

o
j
′ − θojyoj ′ − Σo

j))

=O′jΛ̃
o−1(Λ̃o−1 − σΣIoj + Σo

j)
−1Σo

j(y
o
jy

o
j
′ − yojθoj ′ − Σo

j)(Λ̃
o−1 − σΣIoj + Σo

j)
−1Λ̃o−1Oj.

Observe that the norm of the last expression is the same with the norm of the same
expression with the O′j term at the beginning and the Oj at the end removed. Hence,
the norm of this term can be bounded using the exact same arguments given in the
paragraph containing (17).

To show the convergence of (III)J , observe that∣∣∣∣∣ 1J
J∑
j=1

2

oj
µoj
′(Λo

j + Σo
j)
−1Σo

j(y
o
j − θoj )

∣∣∣∣∣ ≤ ‖µ‖
∥∥∥∥∥ 1

J

J∑
j=1

2

oj
O′j(Λ

o
j + Σo

j)
−1Σo

j(y
o
j − θoj )

∥∥∥∥∥ ,
by Cauchy-Schwarz. Taking the expectation of the supremum of the right-hand side
over (µ,Λ) ∈MJ × S+

T , and then applying the Cauchy-Scwharz inequality again, it
follows that it is sufficient to show

sup
J
E sup

µ∈MJ

‖µ‖2 <∞ and

E sup
Λ∈S+T

∥∥∥∥ 1

J

∑J

j=1

2

oj
O′j(Λ

o
j + Σo

j)
−1Σo

j(y
o
j − θoj )

∥∥∥∥2

→ 0.

The first line has already been established in the proof of Theorem 4.2. The second
line can be shown by a similar derivative calculation to that used in establishing the
convergence of (II)J and, again, the same lines of argument used in the proof of
Theorem 4.2.

Appendix C Weighted MSE

Here, I consider the case where the loss function is weighted in the sense

R(θ, θ̂) = 1
J
Eθ(θ̂ − θ)′W (θ̂ − θ),

85



where W is a positive semidefinite T × T matrix. While I assume that the weight
is the same for each j, all results in this section go though if one allows a different
weight Wj for each j as long as supj σ1(Wj) <∞.

The corresponding risk estimate is given as

UREW
j (µ,Λ)

= tr(WΣj)− 2 tr((Λ + Σj)
−1ΣjWΣj)

+ (yj − µ)′[(Λ + Σj)
−1ΣjWΣj(Λ + Σj)

−1](yj − µ).

It is straightforward to see that analogous versions of Theorems 4.1, 4.2, and 4.3 go
through for any positive semidefinite weight matrixW , which implies that minimizing
the risk estimate obtains the oracle under weighted losses as well. To see this, note
that the difference between the risk estimate and the loss is given as

UREW
j (µ,Λ)− (θ̂j(µ,Λ)− θj)′W (θ̂j(µ,Λ)− θj)

= tr(WΣj)− 2 tr((Λ + Σj)
−1ΣjWΣj)

+ (yj − µ)′[(Λ + Σj)
−1ΣjWΣj(Λ + Σj)

−1](yj − µ)

− (yj − θj − Σj(Λ + Σj)
−1(yj − µ))′W (yj − θj − Σj(Λ + Σj)

−1(yj − µ))

= tr(WΣj)− 2 tr((Λ + Σj)
−1ΣjWΣj)− (yj − θj)′W (yj − θj)

+ 2(yj − µ)′(Λ + Σj)
−1ΣjW (yj − θj)

=y′jWyj − θ′jWθj − tr(WΣj)− 2 tr(WΛ(Λ + Σj)
−1(yjy

′
j − yjθ′j − Σj))

− 2µ′(Λ + Σj)
−1ΣjW (yj − θj).

(38)

SinceW does not vary with j, the exact same proofs given for the theorems underW =

IT all go through without any additional assumptions. Since the proof is essentially
just a repetition of the provided proofs with additional σ1(W ) terms appearing in
numerous places, I omit the proof for the weighted case.

To see why considering weighted loss functions can be interesting, let Q denote any
R× T matrix, and suppose that the interest is in estimating the linear combinations
{Qθj}Jj=1 rather than the original vector of the true means. Under the second level

model of θj
i.i.d.∼ N(µ,Λ), the posterior mean of the parameter of interest is given as

86



Qθ̂j(µ,Λ) and the resulting loss is

1

J

J∑
j=1

(Qθ̂j(µ,Λ)−Qθj)′(Qθ̂j(µ,Λ)−Qθj)

=
1

J

J∑
j=1

(θ̂j(µ,Λ)− θj)′Q′Q(θ̂j(µ,Λ)− θj),

which is the original loss function with weight matrixW = Q′Q. Hence, the weighted
loss function arises naturally whenever a linear function of the parameter is of interest.

Weighted loss in the unbalanced case. Suppose the empirical researcher is
interested in a linear combination of the true mean vector under the unbalanced case.
In such a scenario, the weights should be adjusted so that it reflects the missing cells.
To see this, consider the case where Q = 1

T
1′T so that the interest is in the time

average of the mean for each unit j. Consider the extreme case where there is only
one observation available, at period 1, for j. Then, if one does not wish to distinguish
between different teachers, it seems reasonable that the parameter of interest in this
case should be θj1 rather than 1

T
θj1. However, if the researcher mechanically takes

QO′j, then she will end up with this latter term. When Q is a row vector with only
nonnegative entries, a natural way to resolve this is to rescale QOj so that the sum of
its entries is equal to the sum of the entries of Q by defining Qo

j = Q1T

1′ojQO
′
j
QO′j. Note

that Q1T

1′ojQO
′
j

= T/oj when Q = 1
T
1′T , which gives the desired weighting.

In the general case where Q is a R × T matrix with positive entries, the same
can be achieved by scaling QO′j so that the sum of all the entries are equal the sum
of entries of Q. Accordingly, define the scaled version as Qo

j =
1′RQ1T

1′RQO
′
j1oj

QO′j and
the corresponding weight matrix W o

j = Qo
j
′Qo

j . In this case, the risk estimate to be
minimized is given as UREo,W (µ,Λ) = 1

J

∑J
j=1 UREo,W

j (µ,Λ), where

UREo,W
j (µ,Λ) := tr(W o

j Σo
j)− 2 tr((Λo

j + Σo
j)
−1Σo

jW
o
j Σo

j)

+ (yoj − µoj)′[(Λo
j + Σo

j)
−1Σo

jW
o
j Σo

j(Λ
o
j + Σo

j)
−1](yoj − µo).

Again, this risk estimate can be shown to converge uniformly to the corresponding
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loss
1

J

J∑
j=1

(θ̂oj (µ,Λ)− θoj )′W o
j (θ̂oj (µ,Λ)− θoj ).

Appendix D Details for the empirical exercise

D.1 Estimation of β and σ2

The coefficient vector on the observables, β, is estimated by OLS on the following
demeaned version of the regression formula,

ỹijt = X̃ ′ijtβ + ε̃ijt,

so that β̂ = (
∑J

j=1

∑T
t=1

∑njt

i=1 X̃ijtX̃
′
ijt)
−1(
∑J

j=1

∑T
t=1

∑njt

i=1 X̃ijtỹijt). The coefficient
estimates are reported in Table 1. The variance of the idiosyncratic term σ is esti-
mated by dividing the sum of squared residuals by the appropriate degrees of freedom,

σ̂ :=
1∑J

j=1

∑T
t=1(njt − 1)− 10

J∑
j=1

T∑
t=1

njt∑
i=1

(ỹijt − X̃ ′ijtβ̂)2

D.2 Definition of the estimators for fixed effects

The least squares estimator for the time-varying fixed effect αjt is given as

α̂jt =
1

njt

njt∑
i=1

(
ỹijt − X̃ ′ijtβ̂

)
,

and for the time-invariant case, α̂j0 = 1
nj

∑T
t=1 njtα̂jt with nj =

∑T
t=1 njt.

The EBMLE for the time invariant case (i.e. the “conventional estimator”) is
defined as α̂EBMLE

j0 =
σ̂/nj

σ̂/nj+λ̂EBMLE
µ̂EBMLE + λ̂EBMLE

σ̂/nj+λ̂EBMLE
α̂j0, where (µ̂EBMLE, λ̂EBMLE)

is obtained by maximizing the likelihood of α̂j0 given by α̂j0
indep∼ N

(
µ, σ̂

nj
+ λ
)
.

To describe the estimators for the time variant case, write Σ̂j = diag(σ̂/nj1, . . . , σ̂/njT ).
The EBMLE and URE estimators for αj in this case is given by

Σj(Λ̂ + Σj)
−1µ̂+ Λ̂(Λ̂ + Σj)

−1α̂j
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Table 1: Parameter estimates for the baseline value-added model (10).

Dependent variable:

ELA score Math score

Score from previous year 0.629∗∗∗ 0.707∗∗∗

(0.002) (0.002)

Male −0.069∗∗∗ 0.022∗∗∗

(0.003) (0.002)

Black −0.090∗∗∗ −0.112∗∗∗

(0.006) (0.005)

Hispanic −0.060∗∗∗ −0.065∗∗∗

(0.005) (0.004)

Asian 0.071∗∗∗ 0.122∗∗∗

(0.005) (0.004)

Multi-Racial 0.016 0.009
(0.014) (0.012)

Native American −0.023 −0.018
(0.015) (0.013)

ELL −0.180∗∗∗ −0.111∗∗∗

(0.006) (0.004)

SWD −0.263∗∗∗ −0.207∗∗∗

(0.005) (0.004)

FL −0.046∗∗∗ −0.042∗∗∗

(0.003) (0.003)

Observations 174,239 195,792

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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where (µ̂, Λ̂) is chosen by maximizing the likelihood implied by α̂j
indep∼ N(µ,Λ + Σj)

for EBMLE, and by minimizing URE(µ,Λ) for the URE estimator with α̂j playing
the role of yj in the definition of URE(µ,Λ).

Appendix E Semiparametric shrinkage

Here, I illustrate how the semiparametric shrinkage idea by Xie et al. (2012) can be
extended to this setting. I consider the simple shrinkage estimator that shrinks to the
origin. For the univariate model where T = 1, the shrinkage estimator that shrinks
to the origin can be written as

θ̂(0,Λ) =
Λ

Λ + Σj

yj.

Hence, the estimator is obtained by multiplying a shrinkage factor to the observation.
This shinkage factor lies in [0, 1] and shrinks the decreases in Σj. Motivated by such
observation, Xie et al. (2012) consider a class of semiparametric shrinkage estimators,

θ̂b(0,Λ) = b(Σj)yj,

where b(·) is a weakly decreasing function taking values in [0, 1].
To extend this idea to the multivariate setting, recall that the shrinkage matrix is

given as
Λ(Λ + Σj)

−1 = Λ
1
2 (I + Λ−

1
2 ΣjΛ

− 1
2 )−1Λ−

1
2 .

Replacing the middle term (I + Λ−
1
2 ΣjΛ

− 1
2 )−1 by B(Λ−

1
2 ΣjΛ

− 1
2 ) where B : S+

T → S
+
T

is decreasing (with respect to the partial ordering ≤) and σ1(B(·)) ≤ 1 is a direct
extension of the univariate case.

However, here I assume an additional Lipschitz condition, with known finite Lip-
schitz constant, on the function B(·) because 1) the partial ordering may end up
imposing no restriction at all resulting in severe overfitting and 2) to invoke a uni-
form convergence result, it is convenient to have a totally bounded parameter space,
which can be obtained by giving a bound on the Lipschitz constant of B(·). Under
this bound and Assumption 4.1, the URE method (and the corresponding optimal-
ity) can be extended to this wider class of estimators in a straightforward manner.
Note that the part of the shrinkage matrix we are relaxing, (I + Λ−

1
2 ΣjΛ

− 1
2 )−1, is
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Lipschitz as well, so the parametric estimator considered in the main text is indeed
nested in this semiparametric class. However, computation is extremely difficult; the
optimization problem that must be solved is with respect to a T (T +1)/2 matrix and
a function of T (T + 1)/2 variables.
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